Яков Перельман - Занимательные опыты и задачи по физике Страница 13
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Яков Перельман
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 30
- Добавлено: 2019-01-29 11:12:40
Яков Перельман - Занимательные опыты и задачи по физике краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Яков Перельман - Занимательные опыты и задачи по физике» бесплатно полную версию:Кто сказал, что наука – это сложно? Это весело и очень интересно!В книге популяризатора науки Якова Перельмана «Занимательные опыты и задачи по физике» легко, понятно и увлекательно рассказывается о скорости и движении, теплопроводности и вращении, преломлении света и «вечных двигателях» и еще многом-многом другом. Головоломки и замысловатые вопросы, забавные задачи и парадоксы помогут любознательному читателю не только лучше узнать, но и полюбить физику.Для среднего школьного возраста.
Яков Перельман - Занимательные опыты и задачи по физике читать онлайн бесплатно
Разоблаченный изобретатель не сдавался; он упорно утверждал до самой смерти, что жена и прислуга донесли на него по злобе. Но доверие к нему было подорвано. Недаром он твердил посланцу Петра, Шумахеру, о людском злонравии и о том, что «весь свет наполнен злыми людьми, которым верить весьма невозможно».
Во времена Петра I славился в Германии еще и другой «вечный двигатель» – некоего Гертнера. Шумахер писал об этой машине следующее: «Господина Гертнера Perpetuum mobile, которое я в Дрездене видел, состоит из холста, песком засыпанного, и в образе точильного камня сделанной машины, которая назад и вперед сама от себя движется, но, по словам господина инвентора (изобретателя), не может весьма велика сделаться». Без сомнения, и этот двигатель не достигал своей цели и в лучшем случае представлял собой замысловатый механизм с искусно скрытым, отнюдь не «вечным» живым двигателем. Вполне прав был Шумахер, когда писал Петру, что французские и английские ученые «ни во что почитают все оные перепетуи мобилес и сказывают, что оное против принципиев математических».
Глава пятая
Свойства жидкостей и газов
Задача о двух кофейниках
Перед вами (рис. 51) два кофейника одинаковой ширины: один высокий, другой – низкий. Какой из них вместительнее?
Многие, вероятно, не подумав, скажут, что высокий кофейник вместительнее низкого. Если бы вы, однако, стали лить жидкость в высокий кофейник, вы смогли бы налить его только до уровня отверстия его носика – дальше вода начнет выливаться. А так как отверстия носика у обоих кофейников на одной высоте, то низкий кофейник оказывается столь же вместительным, как и высокий с коротким носиком.
Рис. 51. В какой из этих кофейников можно налить больше жидкости?
Это и понятно: в кофейнике и в трубке носика, как во всяких сообщающихся сосудах, жидкость должна стоять на одинаковом уровне, несмотря на то, что жидкость в носике весит гораздо меньше, чем в остальной части кофейника. Если же носик недостаточно высок, вы никак не нальете кофейник доверху: вода будет выливаться. Обычно носик устраивается даже выше краев кофейника, чтобы сосуд можно было немного наклонять, не выливая содержимого.
Чего не знали древние
Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.
Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рис. 52, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, – и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!
Рис. 52. Водопроводные сооружения древнего Рима в их первоначальном виде.
Жидкости давят… вверх!
О том, что жидкости давят вниз, на дно сосуда, и вбок, на стенки, знают даже и те, кто никогда не изучал физики. Но что они давят и вверх, многие даже не подозревают. Обыкновенное ламповое стекло поможет убедиться, что такое давление действительно существует. Вырежьте из плотного картона кружок таких размеров, чтобы он закрывал отверстие лампового стекла. Приложите его к краям стекла и погрузите в воду, как показано на рис. 53. Чтобы кружок не отпадал при погружении, его можно придерживать ниткой, протянутой через его центр, или просто прижать пальцем. Погрузив стекло до определенной глубины, вы заметите, что кружок хорошо держится и сам, не прижимаемый ни давлением пальца, ни натяжением нитки: его подпирает вода, надавливающая на него снизу вверх.
Рис. 53. Простой способ убедиться, что жидкость давит снизу вверх.
Вы можете даже измерить величину этого давления вверх. Наливайте осторожно в стекло воду; как только уровень ее внутри стекла приблизится к уровню в сосуде, кружок отпадает. Значит, давление воды на кружок снизу уравновешивается давлением на него сверху столба воды, высота которого равна глубине кружка под водой. Таков закон давления жидкости на всякое погруженное тело. Отсюда, между прочим, происходит и та «потеря» веса в жидкостях, о которой говорит знаменитый закон Архимеда.
Имея несколько ламповых стекол разной формы, но с одинаковыми отверстиями, вы сможете проверить и другой закон, относящийся к жидкостям, а именно: давление жидкости на дно сосуда зависит только от площади дна и высоты уровня, от формы же сосуда оно совершенно не зависит. Проверка будет состоять в том, что вы проделаете описанный сейчас опыт с разными стеклами, погружая их на одну и ту же глубину (для чего надо предварительно приклеить к стеклам бумажные полоски на равной высоте). Вы заметите, что кружок всякий раз будет отпадать при одном и том же уровне воды в стеклах (рис. 54). Значит, давление водяных столбов различной формы одинаково, если только одинаковы их основание и высота. Обратите внимание на то, что здесь важна именно высота, а не длина, потому что длинный наклонный столб давит на дно совершенно так же, как и короткий отвесный столб одинаковой с ним высоты (при равных площадях оснований).
Рис. 54. Давление жидкости на дно сосуда зависит только от площади дна и от высоты уровня жидкости. На рисунке показано, как проверить это правило.
Что тяжелее?
На одну чашку весов поставлено ведро, до краев наполненное водой. На другую – точно такое же ведро, тоже полное до краев, но в нем плавает кусок дерева (рис. 55). Какое ведро перетянет?
Я пробовал задавать эту задачу разным лицам и получал разноречивые ответы. Одни отвечали, что должно перетянуть то ведро, в котором плавает дерево, потому что «кроме воды, в ведре есть еще и дерево». Другие – что, наоборот, перетянет первое ведро, «так как вода тяжелее дерева».
Но ни то, ни другое не верно: оба ведра имеют одинаковый вес. Во втором ведре, правда, воды меньше, нежели в первом, потому что плавающий кусок дерева вытесняет некоторый ее объем.
Рис. 55. Оба ведра одинаковы и наполнены водой до краев; в одном плавает кусок дерева. Которое перетянет?
Но, по закону плавания, всякое плавающее тело вытесняет своей погруженной частью ровно столько жидкости (по весу), сколько весит все это тело. Вот почему весы и должны оставаться в равновесии.
Решите теперь другую задачу. Я ставлю на весы стакан с водой и рядом кладу гирьку. Когда весы уравновешены гирями на чашке, я роняю гирьку в стакан с водой. Что сделается с весами?
По закону Архимеда, гирька в воде становится легче, чем была вне воды. Можно, казалось бы, ожидать, что чашка весов со стаканом поднимется. Между тем в действительности весы останутся в равновесии. Как это объяснить?
Гирька в стакане вытеснила часть воды, которая оказалась выше первоначального уровня; вследствие этого увеличивается давление на дно сосуда, так что дно испытывает добавочную силу, равную потере веса гирькой.
Естественная форма жидкости
Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда «теряет» свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно (рис. 56).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.