Артур Бенджамин - Магия математики: Как найти x и зачем это нужно Страница 15
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Артур Бенджамин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 62
- Добавлено: 2019-01-28 16:19:11
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Артур Бенджамин - Магия математики: Как найти x и зачем это нужно» бесплатно полную версию:Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно читать онлайн бесплатно
То есть какую бы практическую задачу вы ни решали, вы можете превратить нужный вам год в один из тех, что составляют нашу таблицу, и таким нехитрым способом узнать его код. Почему, например, кодом 2017-го будет 0? Да потому что с 2000 года (имеющего код 0), календарь смещается по неделе 17 раз плюс дополнительно 4 раза за каждый високосный год – 2004-й, 2008-й, 2012-й и 2016-й. Значит, код 2017-го будет 17 + 4 = 21 ≡ 0 (mod 7). А что насчет 2020-го? Здесь у нас будет уже пять високосных годов (ведь сам 2020-й – високосный), поэтому календарь смещается 20 + 5 = 25 раз, а так как 25 ≡ 4 (mod 7), кодом 2020 года будет 4. Вот как будет выглядеть общая схема определения годовых кодов в промежутке с 2000-го по 2027-й.
Шаг 1: Возьмите две последние цифры года (в примере с 2022 годом этими цифрами будут 22).
Шаг 2: Разделите это число на 4. В результате нас интересует только целое, остаток можно проигнорировать (в нашем примере – 22 ÷ 4 = 5 с остатком 2).
Шаг 3: Сложите числа из первого и второго шагов (в нашем примере – 22 + 5 = 27).
Шаг 4: Возьмите ближайшее число, кратное 7, которое при этом будет меньше суммы, полученной после третьего шага (это может быть 0, 7, 14, 21 или 28). Вычтите его из этой суммы и узнаете код года (другими словами, сократите число из третьего шага по модулю 7: так как 27 – 21 = 6, кодом 2022 года будет 6).
Обратите внимание, что шаги с 1 по 4 работают для любого года в промежутке с 2000-го по 2099-й; можно значительно упростить себе задачу устного счета, просто вычтя на начальном этапе число, кратное 28, и получив таким образом год в промежутке с 2000-го по 2027-й. 2040 год, например, можно «упростить» до 2012, и шаги с 1-го по 4-й превращаются в элементарное 12 + 3 – 14 = 1. К тому же результату можно прийти, работая непосредственно с 2040: 40 + 10 – 49 = 1.
Алгоритм этот можно использовать не только для двухтысячных годов. Коды месяцев останутся такими же, а вот с кодами годов нужно будет сделать одну небольшую поправку. Код 1900 года будет равен 1. Следовательно, код каждого года в промежутке с 1900-го по 1999-й будет на одну единицу больше, чем их «собратья» в промежутке с 2000-го по 2099-й. То есть если код 2040-го – 1, значит, кодом 1940-го будет 2; а кодом 1922-го, например, будет 7 (ну, или 0), потому что 2022 год обозначается кодом 6. Код 1800 года – 3, 1700-го – 5, 1600-го – 0 (на самом деле на полный цикл у календаря уходит 400 лет, потому что именно четырехсотлетний период имеет 100 – 3 = 97 високосных годов, то есть ровно через 400 лет, день в день, календарь сместится на 400 + 97 = 497 дней, что даст нам абсолютно тот же день недели и то же число, ведь 497 кратно 7).
Хотите узнать, каким днем недели было 4 июля 1776 года? Сначала найдем код 2076 года, для чего вычтем 56 из 2076, а потом посчитаем код 2020-го: 20 + 5 – 21 = 4. Следовательно, код 1776 года будет 4 + 5 = 9 ≡ 2 (mod 7). Таким образом, получается, что по григорианскому календарю 4 июля 1776 года пришлось на
День недели = 5 + 4 + 2 = 11 ≡ 4 (mod 7) = ЧетвергА раз так, может быть, те, кто подписывал Декларацию независимости, просто хотели успеть завершить все перед выходными?
ОтступлениеПод конец главы давайте я расскажу вам о еще одном волшебном свойстве числа 9. Загадайте любое число, в котором ни одна цифра не повторяется, при этом идут они от меньшего к большему. Это может быть, например, 12 345, 2358, 369 или 135 789. Умножьте это число на 9 и сложите между собой цифры. В том, что результат будет кратен 9, для нас ничего нового нет – удивительным будет то, что цифры в своей сумме дадут ровно 9. Например,
9 × 12 345 = 111 1059 × 2358 = 21 2229 × 369 = 3321Фокус сработает, даже если цифры будут повторяться – главное, чтобы они шли от меньшего к большему и чтобы разряд единиц не равнялся разряду десятков. Вот, смотрите:
9 × 12 223 = 110 0079 × 33 344 44 9 =300 100 041Так в чем тут секрет? Давайте посмотрим, что происходит, когда мы умножаем на 9 число ABCDE, в котором A ≤ B ≤ C ≤ D < E. Так как умножать на 9 – все равно что умножать на 10 – 1, мы приходим к вычитанию
Если считать слева направо, то, с учетом того, что B ≥ A, C ≥ B, D ≥ C, а E > D, мы будем иметь дело с
а сумма цифр результата составит
A + (B – A) + (C – B) + (D – C) + (E – D – 1) + (10 – E) = 9что и требовалось доказать.
Глава номер четыре
Магия счета
Математика с восклицательным знаком!
В самом начале этой книги мы говорили о том, как посчитать сумму всех чисел от 1 до 100. И мы справились – у нас получилось 5050. Также мы нашли замечательную формулу для подсчета суммы первых n. А почему бы теперь не поискать произведение чисел от 1 до 100? Даже по примерным прикидкам результат получится просто гигантским! Если вам интересно, скажу: это число, состоящее из 158 знаков. Вот оно:
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000
В этой главе вы увидите, как использовать такие огромные числа для счета. Они помогут нам узнать, сколько существует способов расставить на книжной полке дюжину книжек (примерно полмиллиарда), какие у вас шансы собрать хотя бы одну пару в покере (не такие уж и маленькие) или выиграть в лотерее (не такие уж и большие).
Когда мы перемножаем все числа от 1 до n, для обозначения произведения мы используем n! что читается как «факториал числа n». Другими словами,
n! = n × (n – 1) × (n – 2) ×… × 3 × 2 × 1Например,
5! = 5 × 4 × 3 × 2 × 1 = 120Мне кажется, символ восклицательного знака подходит здесь как нельзя лучше: значение числа n! увеличивается очень быстро и, как мы увидим чуть позже, таит в себе много удивительного. Для удобства математики определяют значение 0! = 1. А еще n! не определяется, когда n – отрицательная величина.
ОтступлениеКазалось бы, 0! должен быть равен 0. Но это почему-то не так: 0! = 1. Давайте разберемся, почему. Обратите внимание, что для n ≥ 2 n! = n × (n – 1)! а значит
Если мы хотим, чтобы наше утверждение оставалось верным для n = 1, нам понадобится
Итак, факториалы растут очень и очень быстро. Посмотрите сами:
Насколько велики эти числа? Ученые говорят, что количество всех-всех песчинок в мире равняется 10²². А количество всех-всех атомов во Вселенной – 1080. Так вот, если вы тщательно перемешаете колоду из 52 карт (что, как мы чуть позже узнаем, может быть сделано 52! способами), шансы на то, что в таком порядке они сложатся впервые со времен изобретения карт и никогда больше не сложатся снова, близки к 100 %. И это при условии, что все люди на Земле каждую минуту на протяжении нескольких миллионов лет будут тасовать каждый свою колоду.
ОтступлениеВ начале главы вы, скорее всего, заметили, каким огромным количеством нолей заканчивается факториал 100! Откуда они берутся? При перемножении чисел от 1 до 100 мы получаем ноль всякий раз, когда умножаем число, кратное 5, на число, кратное 2. Первых в промежутке от 1 до 100 будет 20, вторых (по сути, всех четных) – 50, что, по идее, дает нам в конце 20 нолей. Но ведь числа 25, 50, 75 и 100 дают нам дополнительные коэффициенты пятерки, поэтому 100! будет иметь в итоге 24 ноля.
Как и в главе 1, здесь мы увидим несколько замечательных математических закономерностей, в которых используются факториалы. Вот, например, одна из моих любимых:
Правило суммы и произведения
Большинство проблем с вычислением на самом деле сводятся к двум правилам – суммы и произведения. Правило суммы используется, когда нужно подсчитать общее количество имеющихся у вас вариантов выбора. Допустим, у вас есть 3 рубашки с короткими рукавами и 5 рубашек – с длинными. Но наденете-то вы только одну. Значит, вы стоите перед выбором одного из 8 вариантов. Обобщая, можно сказать, что, если у вас есть два типа объектов и количество объектов первого типа равно a, а объектов второго типа – b, всего у вас будет a + b разных объектов (естественно, предполагая, что ни один из объектов типа b не повторяется в типе a).
ОтступлениеКак уже было сказано, правило суммы исходит из того, что в двух типах объектов каждый объект уникален. Но если у нас все же есть несколько объектов (в количестве c), принадлежащих к обоим типам, не считать же их дважды, правда? Значит, формулу придется немного изменить: a + b – c. Например, если в классе у 12 учеников есть собаки, у 19 – кошки, а у 7 – и собаки и кошки, получается, что общее количество учеников, держащих только одно животное, будет 12 + 19 – 7 = 24. Если перевести это в плоскость чистой математики, в промежутке от 1 до 100 у нас получится 50 чисел, кратных 2; 33 числа, кратных 3; и 16 чисел, кратных как 2, так и 3 (ну или кратных 6). Значит, количество чисел, кратных либо 2, либо 3, нужно подсчитывать так: 50 + 33 – 16 = 67.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.