Яков Перельман - Занимательный космос. Межпланетные путешествия Страница 17

Тут можно читать бесплатно Яков Перельман - Занимательный космос. Межпланетные путешествия. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Яков Перельман - Занимательный космос. Межпланетные путешествия

Яков Перельман - Занимательный космос. Межпланетные путешествия краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Яков Перельман - Занимательный космос. Межпланетные путешествия» бесплатно полную версию:
«Это сочинение явилось первой в мире серьезной, хотя и вполне общепонятной книгой, рассматривающей проблему межпланетных перелетов и распространяющей правильные сведения о космической ракете…»К. Э. Циолковский

Яков Перельман - Занимательный космос. Межпланетные путешествия читать онлайн бесплатно

Яков Перельман - Занимательный космос. Межпланетные путешествия - читать книгу онлайн бесплатно, автор Яков Перельман

Пусть скорость вытекания пороховых газов из дюзы равна 1000 м/с. Если искомый заряд х, то по формуле Циолковского:

Легко вычислить, что х = 30 кг. При скорости вытекания пороховых газов 2000 м/с достаточен для этого еще меньший заряд – 14 кг.

2. Какой заряд необходим для переброски одной тонны полезного груза с Земли на Луну?

Чтобы долететь до Луны с наименьшим расходом горючего, ракета должна быть снабжена запасом энергии, отвечающим скорости 12 240 м/с (см. Приложение 4). Возьмем наибольшую скорость вытекания пороховых газов, 2400 м/с, и составим уравнение:

Отсюда × = 159. Заряд должен составлять 159/160 веса ракеты; на всю долю полезного груза остается 0,6 % общего веса. Излишне говорить, что это конструктивно неосуществимо.

Пользуясь же жидким горючим, со скоростью вытекания газов 4000 м/с, мы получаем гораздо более благоприятные соотношения:

откуда × = 19. Заряд составляет 19/20 общего веса, и на долю полезного груза приходится уже 5 %.

Читателю должна быть понятна теперь та задача, которую поставили перед собой работники звездоплавания на нынешнем этапе его развития: во что бы то ни стало изобрести ракету с жидким зарядом. Будущее имеют только такие ракеты; без них заманчивые цели звездоплавания никогда не будут претворены в действительность. В дальнейших главах мы побеседуем о результатах этих изобретательских стремлений.

Перейдем теперь к следующему пункту механики реактивного движения. Как вычислить силу, с какой продукты горения давят на ракету? Для этого достаточно знать количество ежесекундно потребляемого горючего и скорость вытекания газов. Расчет основан на элементарных положениях динамики. По закону противодействия, количество движения (тс), присущее вытекающим газам, в каждый момент равно количеству движения ( Mv ) самой ракеты. Последнее же равно импульсу силы, увлекающей ракету ( Ft = Mv). Значит (считая t = 1с), имеем, что искомая сила напора на ракету равна

F= тс,

где т — масса ежесекундно потребляемого горючего, ас — секундная скорость газовой струи. Если, например, ракета сжигает 160 г бензина в секунду, а продукты сгорания вытекают со скоростью 2000 м/с = = 200 000 см/с, то сила напора на ракету (или сила тяги) составляет

160 × 200 000 = 32 000 000 дин = около 32 кг.

Нам предстоит еще рассмотреть вопрос о влиянии силы тяжести на полет ракеты. До сих пор мы вели расчеты в предположении, что земная тяжесть на ракету не действует. Вспомним, однако, что под влиянием земной тяжести все тела близ поверхности Земли падают с секундным ускорением около 10 м/с. Отсюда прямо следует, что если ракета должна в среде без тяжести получить движение отвесно вверх с секундным ускорением 40 м/сек, то, взлетая от Земли, она получит ускорение всего в 30 м/с2. Далее, если собственное ускорение ракеты меньше ускорения земной тяжести, то такая ракета вовсе не будет подниматься на Земле, как бы долго ни продолжалось горение и сколько бы горючего ни было израсходовано. Наконец в случае равенства обоих ускорений ракета представляет картину, совершенно необычайную: она неподвижно висит над Землей все время, пока происходит горение, а по окончании его – падает на Землю.

Как видим, быстрота сгорания, обусловливающая нарастание скорости ракеты, определяет в среде тяжести судьбу ракеты; если горение идет слишком медленным темпом, отлет ракеты вовсе не состоится. Математическое рассмотрение вопроса (см. Приложение 3) показывает, что в условиях тяжести скорость отвесного поднятия ракеты всегда несколько меньше той, какую получила бы ракета, израсходовав равный запас горючего в среде без тяжести. Чем больше собственное ускорение ракеты по сравнению с ускорением тяжести, тем меньше различие между скоростью ракеты в среде без тяжести и в условиях тяжести. Но так как человеческий организм может безопасно переносить не более чем трехкратное увеличение земной тяжести, то при отлете с Земли придется практически весьма считаться с этим различием.

Кроме силы тяжести, отлету ракеты с поверхности Земли должна препятствовать и атмосфера. Мы не можем рассматривать в этой книге влияния сопротивления воздуха на движение ракеты – вопрос этот чересчур сложен. Ограничимся указанием на то, что работа преодоления ракетой атмосферного сопротивления гораздо меньше, чем работа преодоления тяжести. При весе ракеты Ют, площади поперечного сечения 4 м2 и ускорении ее движения – 30 м/с2, давление взрывных газов на нее будет равно 30 т; сопротивление же атмосферы, по расчетам К.Э. Циолковского, при хорошо обтекаемой форме ракеты, не будет превышать 100 кг. Проф. Оберт, германский теоретик звездоплавания, считает, что скорость ракеты, отсылаемой с Земли в бесконечность, уменьшается сопротивлением атмосферы всего на 200 м/с. Для ракет земного назначения, пролетающих в атмосфере значительную часть пути, величина сопротивления больше, чем для космических. В случае отсылки, например, ракеты на Луну (при выборе наиболее экономного проекта) максимальная скорость достигается на высоте 1700 км – далеко за пределами атмосферы. Плотный же слой атмосферы, толщиной 50 км, прорезается этой ракетой с довольно умеренной скоростью, которая лишь на уровне 50 км достигает 1,7 км/с – величины порядка скорости снаряда сверхдальнобойной артиллерии. Следовательно, нет места тем опасениям, которые нередко высказываются противниками звездоплавания, – что ракета не в силах пробить воздушный панцирь нашей планеты. Точно так же и при возвращении из космического перелета снова на Землю ракета вступит в плотную часть нашей атмосферы вовсе не со скоростью, близкой к скорости метеоров.

Присутствие атмосферы – отметим кстати – не только не является препятствием к осуществлению межпланетных перелетов, но, напротив, должно быть рассматриваемо как фактор, без которого они едва ли могли бы быть когда-нибудь реализованы. В самом деле: если атмосфера несколько увеличивает расход горючего при отлете с Земли, то зато она же создает огромную экономию горючего при возвращении ракеты из межпланетного рейса, давая возможность затормозить ракету почти без расхода горючего (подробнее об этом будет сказано в главе 15).

Часто задают вопрос: может ли ракета в мировом пространстве изменить направление своего полета? Безусловно, может. Для этого нужно лишь изменить направление газовой струи. Тогда с ракетой произойдет то же, что происходит с свободным телом, получившим удар вне центра его массы: ракета получит вращательное движение. Пользуясь этим, пилот будет иметь возможность менять по желанию курс своего ракетного корабля и даже повертывать его в безвоздушном пространстве на 180°.

Глава 14. Звездная навигация. Скорости, пути, сроки

Первое, что надо разрешить, обсуждая условия звездоплавания, – это вопрос скорости: какою скоростью необходимо снабдить отправляемый с Земли звездолет, чтобы он мог выполнить тот или иной межпланетный рейс? Некоторые из относящихся сюда числовых данных уже приводились ранее. Мы знаем, что круговой облет земного шара осуществляется при скорости (за пределами атмосферы) в 7,9 км/с, а при затрате энергии, отвечающей скорости 11,2 км/с, звездолет совершенно освобождается от цепей земного тяготения. Земного, – но не солнечного. Ракета, которая ринется с Земли с такою скоростью в направлении годового движения нашей планеты, превратится как бы в самостоятельную планету, кружащуюся не около Земли, а около Солнца со скоростью 30 км/с. Она сможет беспрепятственно удаляться от Земли по ее орбите, но не сможет еще уйти от власти Солнца, могучее притяжение которого будет удерживать ее на определенном расстоянии. Чтобы заставить ракету удалиться от Солнца, т. е. описывать более обширную орбиту, нужно увеличить ее скорость либо же с самого начала бросить ее в пространство с увеличенной скоростью. Если мы желаем, чтобы звездолет мог свободно перемещаться по всей планетной системе и даже вовсе покинуть царство нашего Солнца, мы должны снабдить его энергией, соответствующей скорости 16,7 км/с. При скорости промежуточной между 11,2 км/с и 16,7 км/с ракета сможет долететь до орбиты любой из планет нашей системы. Какая же минимальная скорость нужна для достижения с Земли той или иной планеты? Расчет дает следующие цифры (подобные расчеты см. в Приложении 4):

Здесь надо сделать два пояснения. Во-первых, слово «скорость» в этих случаях есть не столько мера быстроты передвижения, сколько мера запаса энергии звездолета. Во-вторых, не следует думать, что, покинув Землю с некоторою скоростью, звездолет сохраняет ее во все время перелета; нет, скорость в пути изменяется согласно второму закону Кеплера: звездолет движется тем медленнее, чем дальше уходит он от центра притяжения.

Будущему звездоплавателю придется отчаливать не только с Земли. В далеких странствованиях, посетив другие планеты, он должен будет взлетать на своем корабле с их поверхности. Какие понадобятся скорости для освобождения от их притяжения? Это можно вычислить, зная радиус планеты и напряжение тяжести на ее поверхности (см. Приложение 4).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.