Рэймонд Смаллиан - Как же называется эта книга? Страница 20

Тут можно читать бесплатно Рэймонд Смаллиан - Как же называется эта книга?. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Рэймонд Смаллиан - Как же называется эта книга?

Рэймонд Смаллиан - Как же называется эта книга? краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Рэймонд Смаллиан - Как же называется эта книга?» бесплатно полную версию:
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Смаллиан - Как же называется эта книга? читать онлайн бесплатно

Рэймонд Смаллиан - Как же называется эта книга? - читать книгу онлайн бесплатно, автор Рэймонд Смаллиан

В каждом конкретном случае мы должны иметь дело с одним и только с одним из этих четырех вариантов. Рассмотрим теперь высказывание P ⇒ Q. Можно ли определить, в каких случаях оно истинно и в каких — ложно? Можно, если воспользоваться следующими соображениями.

Случай 1: P и Q истинны. Так как Q истинно, то P ⇒ Q истинно (факт 2).

Случай 2: P истинно, Q ложно. Тогда P ⇒ Q ложно (факт 3).

Случай 3: P ложно, Q истинно. Тогда P ⇒ Q истинно (факт 1 или факт 2).

Случай 4: P ложно, Q ложно. Тогда P ⇒ Q истинно (факт 1).

Все четыре случая мы сведем в одну таблицу, называемую таблицей истинности для импликации:

(В «нормальной» таблице истинности вместо букв И и Л используют сокращения 0 — ложно и 1 — истинно — SStas)

Три буквы И, И, И (истинно, истинно, истинно) в первой строке означают, что когда P истинно и Q истинно, высказывание P ⇒ Q истинно. Буквы И, Л, Л во второй строке означают, что если P истинно, Q ложно, то P ⇒ Q истинно, а буквы Л, Л, И в четвертой строке — что если P ложно и Q ложно, то P ⇒ Q истинно.

Заметим, что P ⇒ Q истинно в трех из четырех случаев и ложно только во втором случае.

Еще одно свойство импликации. Импликация обладает еще одним важным свойством. Чтобы доказать истинность высказывания «Если P, то Q», достаточно, приняв высказывание P за посылку, убедиться в том, что из него следует высказывание Q. Иначе говоря, если из посылки P следует заключение Q, то высказывание «Если, то Q» истинно.

В дальнейшем мы будем ссылаться на это свойство импликации, как на факт 4.

P Q P⇒Q 1 И И И 2 И Л Л 3 Л И И 4 Л Л И

А. Применение импликации к рыцарям и лжецам

109. О каждом из двух людей A и B известно, что он либо рыцарь, либо лжец. Предположим, что A высказывает следующее утверждение: «Если я рыцарь, то B — рыцарь».

Можно ли определить, кто такие A и B: кто из них рыцарь и кто лжец?

110. У A спрашивают: «Вы рыцарь?» Тот отвечает: «Если я рыцарь, то съем собственную шляпу».

Докажите, что A придется съесть свою шляпу.

111. A утверждает: «Если я рыцарь, то дважды два — четыре». Кто такой A: рыцарь или лжец?

112. A заявляет: «Если я рыцарь, то дважды два — пять». Кто, по-вашему, A: рыцарь или лжец?

113. Относительно A и B известно, что каждый из них либо рыцарь, либо лжец. А заявляет: «Если B — рыцарь, то я лжец». Кто A и кто B?

114. Двух человек X и Y судят за участие в ограблении, A и B выступают на суде в качестве свидетелей. Относительно A и B известно, что каждый из них либо рыцарь, либо лжец. В ходе судебного заседания свидетели выступили со следующими заявлениями:

A: Если X виновен, то Y виновен.

B: Либо X не виновен, либо Y виновен.

Можно ли утверждать, что A и B однотипны? (Напомним, что двух обитателей острова рыцарей и лжецов мы называем однотипными, если они оба рыцари либо оба лжецы.)

115.

У трех обитателей A, B и C острова рыцарей и лжецов взяли интервью, в ходе которого они высказали следующие утверждения:

A: B — рыцарь.

B: Если A — рыцарь, то C — рыцарь.

Можно ли определить, кто из A, B и C рыцарь и кто лжец?

Б. Любовь и логика

116.

Предположим, что следующие два высказывания истинны:

1) Я люблю Бетти или я люблю Джейн.

2) Если я люблю Бетти, то я люблю Джейн.

Следует ли из них непременно, что я люблю Бетти? Следует ли из них непременно, что я люблю Джейн?

117.

Предположим, что у меня спрашивают: «Верно ли, что если вы любите Бетти, то вы также любите Джейн?» Я отвечаю: «Если это верно, то я люблю Бетти».

Следует ли отсюда, что я люблю Бетти? Следует ли отсюда, что я люблю Джейн?

118.

На этот раз перед нами две девушки: Ева и Маргарет. У меня спрашивают: «Правда ли, что если вы любите Еву, то вы также любите Маргарет?» Я отвечаю: «Если это правда, то я люблю Еву, и если я люблю Еву, то это правда».

О какой девушке можно с уверенностью сказать, что я ее люблю?

119.

На этот раз перед нами предстанут три девушки: Сью, Марция и Диана. Предположим, что известно следующее.

1) Я люблю по крайней мере одну из этих трех девушек.

2) Если я люблю Сью, а не Диану, то я также люблю Марцию.

3) Я либо люблю и Диану и Марцию, либо не люблю ни одну из них.

4) Если я люблю Диану, то я также люблю Сью.

Кого из девушек я люблю?

Не кажется ли вам, что логики — народ глуповатый? Уж кому, как не мне, знать, люблю я или не люблю Бетти, Джейн, Еву, Маргарет, Сью, Марцию, Диану и всех прочих. Разве для этого непременно нужно сесть за стол и что-то прикинуть на бумаге? Не сочли бы вы странным, если бы жена, спросив у своего высокоученого мужа: «Милый, ты меня любишь?» — услышала бы в ответ: «Минуточку, дорогая», после чего муж уселся бы за письменный стол и после напряженных вычислений через час сказал бы: «Ты знаешь, милая, выходит, что я тебя люблю»?

В этой связи мне вспоминается история, якобы приключившаяся с Лейбницем. Однажды великий философ стал размышлять, не жениться ли ему на некоей даме. Взяв лист бумаги, он разделил его на две части и на одной подробно перечислил все достоинства дамы, а на другой — ее недостатки. Недостатков оказалось больше, и Лейбниц решил воздержаться от женитьбы.

120.

Эта задача, хотя и проста, но несколько неожиданна. Предположим, что я либо рыцарь, либо лжец и высказываю два следующих утверждения:

1) Я люблю Линду.

2) Если я люблю Линду, то я люблю Кати.

Кто я: рыцарь или лжец?

121. Новый вариант старинной пословицы.

Старинная английская пословица гласит: «Под приглядом котел не закипит». Как я установил, это утверждение ложно. Однажды мне довелось приглядывать за котлом, стоявшим на раскаленной плите, и котел закипел.

А что если мы исправим старинную пословицу, например, так: «Под приглядом котел не закипит, если за ним не приглядывать»?

Как, по-вашему, истинно или ложно такое утверждение?

В. Есть ли сокровища на этом острове?

Задачи двух предыдущих групп были связаны в основном с условными высказываниями, то есть с высказываниями вида «Если P истинно, то Q. Задачи этой группы связаны главным образом с высказываниями вида „P истинно в том и только в том случае, если Q истинно“. Оно означает, что если P истинно, то Q истинно, и если Q истинно, то P истинно. Иначе говоря, если одно из двух высказываний P, Q истинно, то другое также истинно. Оно означает также, что высказывания P и Q либо оба истинны, либо оба ложны. Сложное высказывание „P в том и только в том случае, если Q“ принято обозначать P <⇒ Q».

Таблица истинности для P <⇒ Q имеет следующий вид:

P Q P <⇒ Q 1 И И И 2 И Л Л 3 Л И Л 4 Л Л И

Высказывание «P в том и только в том случае, если Q» иногда читают как «P эквивалентно Q» или как «P и Q эквивалентны». Отметим два следующих факта:

Факт 1. Любое высказывание, эквивалентное истинному высказыванию, истинно.

Факт 2. Любое высказывание, эквивалентное ложному высказыванию, ложно.

122. Есть ли сокровище на этом острове?

На некотором острове, населенном рыцарями и лжецами, разнесся слух о том, что на нем зарыты сокровища. Вы прибываете на остров и спрашиваете у одного из местных жителей (назовем его A), есть ли золото на его острове. В ответ на ваш вопрос A заявляет: «Сокровища на этом острове есть в том и только в том случае, если я рыцарь».

Наша задача подразделяется на две части:

а) Можно ли определить, кто такой A — рыцарь или лжец?

б) Можно ли определить, есть ли сокровища на острове?

123.

В предыдущей задаче коренной житель A острова рыцарей и лжецов добровольно снабдил вас информацией. Предположим, что теперь вы спросили у A: «Эквивалентно ли высказывание о том, что вы рыцарь, высказыванию о том, что на этом острове спрятаны сокровища?» Если бы A ответил «да», то задача свелась бы к предыдущей. Предположим, что A ответил «нет». Могли бы вы в таком случае сказать, спрятаны ли сокровища на острове?

124. Как я разбогател.

К сожалению, история, которую я хочу вам поведать, не соответствует истине. Но поскольку она интересна, то мне все равно хочется рассказать ее вам.

В океане (в каком именно — не помню) неподалеку друг от друга расположены три острова: A, B и C. Мне удалось разузнать, что по крайней мере на одном из них закопаны сокровища, но на каком именно, осталось невыясненным. Острова B и C были необитаемы, население острова A составляли рыцари и лжецы. Не исключено, что среди местных жителей встречались и нормальные люди, но сказать с уверенностью, был ли на острове хоть один нормальный человек, я не берусь.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.