Айзек Азимов - О времени, пространстве и других вещах Страница 20
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Айзек Азимов
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 44
- Добавлено: 2019-01-28 17:40:03
Айзек Азимов - О времени, пространстве и других вещах краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Айзек Азимов - О времени, пространстве и других вещах» бесплатно полную версию:Автор книги рассказывает о появлении первых календарей и о том, как они изменялись, пока не превратились в тот, по которому мы сейчас живем. Вы узнаете много интересного и познавательного о метрических системах, денежных единицах и увлекательных парадоксах физики, химии и математики. Занимательные исторические примеры, иллюстрируя сухие факты, превращаются в яркие рассказы, благодаря живому и образному языку автора.
Айзек Азимов - О времени, пространстве и других вещах читать онлайн бесплатно
Fe = q2 (формула 4).
Подведем итоги. Мы имеем два объекта, расстояние между центрами которых равно 1 см, несущие одинаковые по величине (но не по знаку) электрические заряды и имеющие одинаковую массу (без ограничений). Между ними действует гравитационное и электромагнитное притяжение.
Теперь определим соотношение электромагнитной и гравитационной сил. Чтобы это сделать, разделим формулу 4 на формулу 2. В результате получим:
Fe/Fg = q2/0,0000000667 m2 (формула 5).
Десятичная дробь в знаменателе — вещь весьма неудобная, но мы легко можем перемести ее в числитель, разделив на нее 1. Поскольку 1 : 0,0000000667 = 15 000 000, формула 5 примет вид:
Fe/Fg = 15 000 000 q2/m2 (формула 6)
или еще проще:
Fe/Fg = 15 000 000 (q/m)2 (формула 7).
Так как обе силы измеряются в динах, при делении размерности сократятся, и мы получим «чистое число». Получается, что одна сила больше другой в некое фиксированное число раз, которое останется неизменным, какими бы единицами мы ни пользовались (кто знает, в каких единицах соберется измерять силу разумное существо с пятой планеты звезды Фомальгаут?). Мы получили универсальную постоянную.
Чтобы определить отношение двух сил, необходимо, как следует из формулы 7, найти величину q/m, то есть отношение величины заряда объекта к его массе. Рассмотрим сначала заряд.
Все объекты состоят из мельчайших субатомных частиц, которые можно подразделить на три класса (по величине и знаку заряда).
1) В класс А входят частицы, которые подобно нейтрону и нейтрино не имеют заряда вообще, то есть его величина равна 0.
2) В класс В входят частицы, которые подобно протону и позитрону несут положительный электрический заряд, причем всегда одинаковый по величине. По другим характеристикам они могут отличаться. Величина этого заряда может считаться +1.
3) Класс С включает в себя частицы, которые подобно электрону и антипротону несут отрицательный электрический заряд, величина которого также всегда постоянна и равна -1.
Отсюда следует, что объект любого размера может иметь электрический заряд, равный нулю, если ему «повезло» состоять из нейтральных частиц и/или равного количества положительно и отрицательно заряженных частиц.
Для такого объекта q = 0 независимо от того, сколь велика его масса; и величина q : m = 0. Как следует из формулы 7, Fe : Fg = 0. Гравитационная сила не может быть равной нулю (разве что объект вообще не имеет массы), поэтому при таких условиях она имеет величину значительно большую, чем электромагнитная сила, и остается для рассмотрения в одиночестве.
Сказанное выше справедливо для реальных тел. Суммарные электрические заряды Земли и Солнца фактически равны нулю, и при расчете земной орбиты следует учитывать только гравитационное притяжение между этими небесными телами.
И все же случай, когда Fe = 0, а значит, и Fe : Fg = 0, является только одним экстремумом, причем не самым интересным. Как насчет другого экстремума, когда можно представить объект, несущий максимальный заряд?
Если мы собираемся сделать заряд максимальным, прежде всего следует избавиться от нейтральных частиц, которые увеличивают массу, не увеличивая заряд. Предположим, мы получили некий материальный объект, состоящий только из заряженных частиц. Понятно, что нет смысла создавать его из частиц, имеющих заряды с разными знаками, которые взаимно нейтрализуют друг друга, и суммарный заряд станет меньше максимально возможного.
Тогда нам потребуется один объект, состоящий только из положительно заряженных частиц, а другой — только из отрицательно заряженных частиц.
Хотя все заряженные частицы несут заряды одинаковой величины (-1 или +1), они могут иметь различные массы. Нам потребуются заряженные частицы минимально возможной массы. В этом случае максимально возможный заряд приходится на минимально возможную массу, а величина отношения q/m является максимальной.
Известно, что отрицательная частица минимальной массы — это электрон, а положительная — позитрон. Для этих тел отношение q/m имеет максимальную величину по сравнению с любыми другими известными объектами (пока нет оснований ожидать, что в обозримом будущем откроют объект, для которого q/m будет больше).
Представьте, что мы имеем дело с двумя объектами, один из которых содержит определенное количество электронов, а другой — такое же число позитронов. Между ними будет действовать определенная электромагнитная сила, а также некая гравитационная сила.
Если утроить количество электронов в первом объекте, а также утроить число позитронов в другом, суммарный заряд каждого из них увеличится в три раза, а электромагнитная сила возрастет в 3 × 3 = 9 раз. Но общая масса каждого объекта также утроится, а гравитационная сила возрастет в 3 × 3 = 9 раз. Каждая сила возрастает, но одинаково, поэтому пропорция сохраняется.
Поскольку нас интересует только отношение двух сил, электромагнитной и гравитационной, а оно остается неизменным, как бы ни изменялось количество электронов в одном теле и число позитронов в другом, зачем утруждать себя сложными вычислениями, если все можно свести к простейшему числу 1.
Давайте рассмотрим единичные электрон и позитрон, которые находятся на расстоянии 1 см друг от друга. Такая система даст нам максимальное значение отношения величин электромагнитной и гравитационной сил.
Интересно, что электрон и позитрон имеют одинаковые массы. Эта масса в граммах (эту единицу массы мы используем в расчетах) равна 9,1 × 10-28, или, если вам так больше нравится, 0,00000000000000000000000000091.
Электрический заряд электрона равен заряду позитрона (только имеет другой знак). В электростатических единицах, принятых нами в расчетах, его величина равна 4,8 × 10-10, или 0,00000000048.
Разделив величину заряда на массу, получим 5,3 × 1017, или 530 000 000 000 000 000.
Однако, согласно формуле 7, отношение q/m необходимо возвести в квадрат. Выполнив это несложное действие, получим 2,8 × 1035, или 280 000 000 000 000 000 000 000 000 000 000 000.
Полученный результат, согласно формуле 7, следует еще умножить на 15 000 000, после чего мы, наконец, получим искомую величину. Она составит 4,2 × 1042, или 4 200 000 000 000 000 000 000 000 000 000 000 000 000 000.
Поэтому можно сделать вывод, что электромагнитная сила при самых благоприятных условиях многократно превышает гравитационную.
В реальных условиях вокруг нас не существует электронных/позитронных систем, поскольку позитронов фактически не существует. Наша Вселенная, насколько нам известно удерживается в виде единого целого благодаря силе притяжения между электронами и протонами. Протон в 1836 раз тяжелее электрона поэтому гравитационное притяжение увеличивается без сопутствующего роста электромагнитного притяжения. В этом случае отношение сил Fe : Fg = 2,3 × 1039.
В физическом мире существуют и другие необычайно важные силы. Это ядерные силы сильного и слабого взаимодействия. Причем все они многократно превосходят по величине силу гравитации.
Получается, что сила гравитации, с которой мы сталкиваемся в самом начале жизни, которая сопровождает нас на каждом шагу и которая никогда не покидает, является одной из самых слабых природных сил. Она первая, но самая последняя!
Почему же гравитационная сила кажется такой мощной?
Во-первых, ядерные силы являются короткодействующими, то есть проявляются только на расстояниях, сравнимых по величине с размерами ядерных нуклонов. Электромагнитная и гравитационная силы действуют на больших расстояниях. При этом электромагнитная сила часто самоуничтожается из-за существования не только притяжения, но и отталкивания. Так что гравитация остается в гордом одиночестве. Ей попросту не с кем конкурировать.
Более того, самые заметные тела во Вселенной являются скоплением больших масс, кстати, мы тоже живем на поверхности одного из таких скоплений.
Ну и что? Все равно гравитация повсеместно демонстрирует свою слабость. Вы, с помощью своих слабых мускулов, можете без особого труда поднять 50-фунтовый груз, хотя вся гигантская земная масса тянет его в обратном направлении. Игрушечный магнит легко притянет булавку, преодолев земное притяжение.
Да, гравитация, несомненно, слаба. Но насколько?
Представьте себе, что Земля представляет собой скопление одних только позитронов, а Солнце — электронов. Сила притяжения между ними тогда была бы намного больше, чем слабая гравитация, удерживающая их на своих местах сейчас. В действительности, чтобы уменьшить электромагнитное притяжение до величины существующей в настоящее время гравитационной силы, Земле и Солнцу пришлось бы «отодвинуться» друг от друга приблизительно на 33 000 000 000 000 000 световых лет, то есть на расстояние в 5 миллионов раз большее, чем диаметр известной Вселенной.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.