Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления Страница 23
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Дмитрий Гусев
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 44
- Добавлено: 2019-01-29 09:38:09
Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления» бесплатно полную версию:Книга представляет собой краткое изложение одной из древнейших наук – логики Аристотеля. Её завершают тестовые задания, сборник занимательных логических задач и краткий словарь терминов. Автор – кандидат философских наук, доцент Московского педагогического государственного университета – с неизменным успехом использует материалы книги в многолетней преподавательской практике.Книга адресована учащимся старших классов общеобразовательных учреждений (школ с углублённым изучением предметов социально-гуманитарного цикла, гимназий и лицеев). Она сможет помочь студентам высших учебных заведений сделать изучение логики интересным и увлекательным. Книга будет полезна всем интересующимся логикой и другими гуманитарными науками.
Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления читать онлайн бесплатно
Если взлётная полоса покрыта льдом, то самолёты не могут взлетать.
Сегодня взлётная полоса покрыта льдом.
Сегодня самолёты не могут взлетать.
Условно-категорический силлогизм имеет два модуса:
1. Утверждающий модус, у которого первая посылка представляет собой импликацию, состоящую, как мы уже знаем, из двух частей – основания и следствия, вторая посылка является утверждением основания, а в выводе утверждается следствие. Например:
Если вещество – металл, то оно электропроводно.
Данное вещество – это металл.
Данное вещество электропроводно.
Форма утверждающего модуса условно-категорического силлогизма: ((a → b) ∧ a) → b, где (a → b) – это первая посылка в виде импликации основания и следствия; ((a → b) ∧ a) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и утверждения основания; b – это вытекающий из посылок вывод силлогизма в виде утверждения следствия.
2. Отрицающий модус, у которого первая посылка представляет собой импликацию основания и следствия, вторая посылка является отрицанием следствия, а в выводе отрицается основание.
Например:
Если вещество – металл, то оно электропроводно.
Данное вещество неэлектропроводно.
Данное вещество – не металл.
Форма отрицающего модуса условно-категорического силлогизма: ((a → b) ∧¬ b) → ¬ a, где (a → b) – это первая посылка в виде импликации основания и следствия; ((a → b) ∧ ¬ b) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и отрицания следствия; ¬ a – это вытекающий из посылок вывод силлогизма в виде отрицания основания.
Необходимо обратить внимание на уже известную нам особенность импликативного суждения, которая состоит в том, что основание и следствие нельзя поменять местами. Например, высказывание: «Если вещество – металл, то оно электропроводно», – является верным, т. к. все металлы – это электропроводники (из того, что вещество – металл, с необходимостью вытекает его электропроводность). Однако высказывание: «Если вещество электропроводно, то оно – металл», – неверно, т. к. не все электропроводники являются металлами (из того, что вещество электропроводно, не вытекает то, что оно – металл). Эта особенность импликации обусловливает два правила условно-категорического силлогизма:
1. Утверждать можно только от основания к следствию, т. е. во второй посылке утверждающего модуса должно утверждаться основание импликации (первой посылки), а в выводе – её следствие.
В противном случае из двух истинных посылок может вытекать ложный вывод. Например:
Если слово стоит в начале предложения, то его надо писать с большой буквы.
Слово «Москва» надо писать с большой буквы.
Слово «Москва» всегда стоит в начале предложения.
В силлогизме во второй посылке утверждалось следствие, а в выводе – основание: ((a → b) ∧ b) → a. Это утверждение от следствия к основанию и является причиной ложного вывода при истинных посылках.
2. Отрицать можно только от следствия к основанию, т. е. во второй посылке отрицающего модуса должно отрицаться следствие импликации (первой посылки), а в выводе – её основание. В противном случае из двух истинных посылок может вытекать ложный вывод. Например:
Если слово стоит в начале предложения, то его надо писать с большой буквы.
В данном предложении слово «Москва» не стоит в начале.
В данном предложении слово «Москва» не надо писать с большой буквы.
В силлогизме во второй посылке отрицается основание, а в выводе – следствие: ((a → b) ∧ ¬ a) → ¬ b. Это отрицание от основания к следствию и является причиной ложного вывода при истинных посылках.
Вспомним, что среди сложных суждений помимо импликации: a → b, есть также эквиваленция: a b. Если в импликации всегда выделяется основание и следствие, то в эквиваленции нет ни того, ни другого, т. к. она представляет собой сложное суждение, обе части которого тождественны (эквивалентны) друг другу. Если первой посылкой силлогизма является не импликация, а эквиваленция, то такой силлогизм называется эквивалентно-категорическим. Например:
Если число чётное, то оно делится без остатка на 2.
Число 16 – чётное.
Число 16 делится без остатка на 2.
Форма модуса данного силлогизма: (a b) ∧ a) → b.
Поскольку в первой посылке эквивалентно-категорического силлогизма нельзя выделить ни основания, ни следствия, то рассмотренные выше правила условно-категорического силлогизма к нему неприменимы (в эквивалентно-категорическом силлогизме и утверждать, и отрицать можно как угодно). Если в условно-категорическом силлогизме два модуса правильных и два неправильных (см. выше), то в эквивалентно-категорическом силлогизме все четыре модуса являются правильными:
((a b) ∧ a) → b;
((a b) ∧ b) → a;
((a b) ∧ ¬ a) → ¬ b;
((a b) ∧ ¬ b) → ¬ a.
Читатель без труда сможет подобрать примеры для каждого из четырёх модусов эквивалентно-категорического силлогизма.
Если же обе посылки и вывод представляют собой условные суждения, то это чисто условный силлогизм (чисто условное умозаключение). Например:
Если вещество является металлом, то оно электропроводно.
Если вещество электропроводно, то его невозможно использовать в качестве изолятора.
Если вещество является металлом, то его невозможно использовать в качестве изолятора.
Форма модуса данного силлогизма: ((a → b) ∧ (b → c)) → (a → c).
Проверьте себя:1. Что представляют собой условные умозаключения?
2. Какие модусы имеет условно-категорический силлогизм? Приведите по три примера для каждого модуса, изобразив их форму с помощью условных логических обозначений.
3. Что называется в условно-категорическом силлогизме «основанием», а что – «следствием»? Каковы правила условно-категорического силлогизма и ошибки, возникающие при их нарушении?
Придумайте по два примера для каждой ошибки, возникающей при нарушении соответствующего правила.
4. Что такое эквивалентно-категорический силлогизм? Чем он отличается от условно-категорического? Почему в условно-категорическом силлогизме только два модуса являются правильными, а в эквивалентно-категорическом – четыре. Придумайте по одному примеру для каждого модуса эквивалентно-категорического силлогизма.
5. Чем отличается чисто условный силлогизм от условно-категорического силлогизма? Приведите два примера чисто условного силлогизма.
6. Допущены ли ошибки (и какие) в следующих условно-категорических силлогизмах:
1) Если животное является млекопитающим, то оно позвоночное.
Рептилии не являются млекопитающими.
Рептилии не являются позвоночными.
2) Если человек льстит, то он лжёт.
Этот человек льстит.
Этот человек лжёт.
3) Если геометрическая фигура является квадратом, то у неё все стороны равны.
Равносторонний треугольник не является квадратом.
У равностороннего треугольника стороны не равны.
4) Если металл – свинец, то он тяжелее воды.
Данный металл тяжелее воды.
Данный металл – свинец.
5) Если небесное тело является планетой Солнечной системы, то оно движется вокруг Солнца.
Комета Галлея движется вокруг Солнца.
Комета Галлея является планетой Солнечной системы.
3.7. Условно-разделительный силлогизм
Первая посылка условно-разделительного силлогизма является условным (импликативным) суждением, а вторая посылка – разделительным (дизъюнктивным). Важно отметить, что в условном (импликативном) суждении может быть не одно основание и одно следствие (как в тех примерах, которые мы рассматривали до сих пор), а больше оснований или следствий. Например, в суждении: «Если поступать в МГУ, то надо много заниматься или же надо иметь много денег», – из одного основания вытекает два следствия, что с помощью условных обозначений можно представить в виде формулы: (a → b) ∧ (a → c). В суждении: «Если поступать в МГУ, то надо много заниматься, а если поступать в МГИМО, то тоже надо много заниматься», – из двух оснований вытекает одно следствие: (a → b) ∧ (c → b). В суждении: «Если страной правит мудрый человек, то она процветает, а если ею управляет проходимец, то она бедствует», – из двух оснований вытекает два следствия: (a → b) ∧ (c → d). В суждении: «Если я выступлю против окружающей меня несправедливости, то останусь человеком, хотя жестоко пострадаю; если равнодушно пройду мимо неё, то перестану себя уважать, хотя и буду цел и невредим; а если стану всячески содействовать ей, то превращусь в животное, хотя и достигну материального и карьерного благополучия», – из трёх оснований вытекает три следствия: (a → b) ∧ (c → d) ∧ (e → f).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.