Артур Бенджамин - Магия математики: Как найти x и зачем это нужно Страница 28

Тут можно читать бесплатно Артур Бенджамин - Магия математики: Как найти x и зачем это нужно. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Артур Бенджамин - Магия математики: Как найти x и зачем это нужно» бесплатно полную версию:
Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно читать онлайн бесплатно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно - читать книгу онлайн бесплатно, автор Артур Бенджамин

Сектор с квадратиком имеет размер 2k на 2k, что значит, что его можно полностью выложить тримино (исходя из того, что наше утверждение истинно при n = k). Затем положим одну костяшку тримино в центр доски так, чтобы она находилась одновременно в трех оставшихся секторах, каждый из которых также равен 2k на 2k и в каждом из которых у нас теперь есть по одному квадратику, что делает их абсолютно похожими на первый. Ну а если можно полностью выложить неперекрывающимися тримино каждую часть (размером 2k на 2k) доски, то ими можно выложить и всю доску размером 2k+1 на 2k+1.☺

Последнее тождество имеет много полезных применений. Давайте докажем его по индукции, добавив парочку других способов. Какова сумма первых n чисел, которые получаются при возведении 2 в последовательные степени, начиная с 20 = 1?

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024…

Приступим к сложению:

Видите закономерность? Каждая сумма на 1 меньше следующего числа, получаемого от возведения 2 в степень. Все это сводится вот к чему.

Теорема: Для n ≥ 1

1 + 2 + 4 + 8 +… + 2n–1 = 2n – 1

Доказательство по индукции: Как мы уже отмечали, утверждение является верным при n = 1 (а также 2, 3, 4 и 5). При n = k мы можем утверждать, что

1 + 2 + 4 + 8 +… + 2k–1 = 2k – 1

Добавив к обеим частям следующее число, получаемое при возведении 2 в степень (то есть 2k), приходим к

1 + 2 + 4 + 8 +… + 2k–1 + 2k = (2k – 1) + 2k = 2 × 2k – 1 = 2k+1 – 1 ☺

В 4 и 5 главах мы подтвердили множество закономерностей, находя ответ двумя разными способами. Возможно, комбинаторный подход покажется вам наиболее ценным.

Вопрос: В хоккейной команде n игроков (соответственно, их свитера пронумерованы от 1 до n). Созывается пресс-конференция, на которую должен прийти хотя бы один игрок. Чему равно количество возможных «составов» команды на этой пресс-конференции?

Ответ 1: У каждого игрока два варианта: идти или не идти. Значит, у команды в целом есть 2n вариантов. Но из этого числа нам нужно вычесть единицу, чтобы исключить вероятность того, что на конференцию не придет никто. В итоге получается 2n – 1.

Ответ 2: За основу «состава» положим хоккеиста с наибольшим номером на свитере. «Состав» с единицей в качестве наибольшего числа всего 1, с двойкой их 2 (потому что хоккеист № 2 может пойти либо в одиночестве, либо в компании хоккеиста № 1), с тройкой – 4 (потому что хоккеист № 3 может пойти либо один, либо в компании хоккеиста № 2, который точно так же может позвать, а может и не позвать с собой хоккеиста № 1). Следуя этой логике и дальше, мы увидим, что всего возможных «составов» будет 2n–1, ведь хоккеист № n будет обязан пойти на конференцию, а у каждого из его товарищей (начиная с № 1 и заканчивая № n – 1), которых он может позвать с собой, будет по 2 варианта выбора. То есть 1 + 2 + 4 +… + 2n–1.

Оба результата верны, а значит, равны. Таким образом, получается, что 1 + 2 + 4 +… + 2n–1 = 2n – 1.☺

При всех достоинствах комбинаторного метода наиболее простым здесь будет алгебраический – схожий с тем, который мы использовали для преобразования периодической десятичной дроби в простую.

Алгебраическое доказательство:

Пусть S = 1 + 2 + 4 + 8 +… + 2n–1.

Удвоив обе части, получим

2S = 2 + 4 + 8 +… + 2n–1 + 2n

Вычтем первое уравнение из второго, что позволит нам избавиться от всего лишнего и оставить только S из первого и 2S из второго, то есть

S = 2S – S = 2n – 1

Теорема эта – ключ к двоичной системе, имеющей огромное практическое значение: именно на ее основе проводят числовые операции все компьютеры. Смысл ее заключается в том, чтобы представить любое число как уникальную сумму различных степеней основания числа 2. Например,

83 = 64 + 16 + 2 + 1

Запишем это двоичным кодом, заменяя каждое возведенное в степень число 2 единицей, а каждое пропущенное значение 2 в степени – нолем. В нашем примере это 83 = (1 × 64) + (0 × 32) + (1 × 16) + (0 × 8) + (0 × 4) + (1 × 2) + (1 × 1). Следовательно, в двоичной системе число 83 выглядит так:

83 = (1010011)2

Как удостовериться, что в таком виде можно представить любое положительное число? Предположим, что каждое число от 1 до 99 есть уникальная сумма степеней основания 2. Сможем ли мы представить в столь же уникальном виде число 100? Начнем с наибольшей степени основания 2, которая меньше 100, то есть с 64. (Почему именно 64? Да потому что меньшие значения – 1, 2, 4, 8, 16 и 32 – дадут в сумме лишь 63, а значит, 100 нам никак не получить.) Остается добрать 36 – точно так же, с помощью чисел, которые получаются от возведения 2 в разные степени. Как это сделать? Проще всего – следуя той же логике, что и с сотней, то есть начать с самого большого подходящего нам числа. Так как 36 = 32 + 4, значит 100 = 64 + 32 + 4, в двоичной системе – (1100100)2. Обобщив это (с помощью так называемого убедительного индуктивного подтверждения), приходим к выводу, что любое положительное число имеет уникальное двоичное представление.

Простые числа

Как мы только что убедились, любое положительное целое число может быть представлено в виде уникальной суммы различных степеней числа 2. В принципе, можно говорить, что числа, получаемые при возведении 2 в последовательные степени – это строительные блоки, из которых складываются положительные целые числа.

Примерно то же справедливо и отношении простых чисел и умножения: любое положительное целое число можно представить в виде произведения простых чисел (с той лишь разницей, что простые числа изучены куда меньше, чем степени основания 2, и знаем о них мы далеко еще не всё).

Простым числом называется целая положительная величина, имеющая только два делителя: 1 и само себя. Вот некоторые из них:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53…

Число 1 простым не является: у него всего один делитель (хотя, конечно, не только поэтому – есть и более веские причины, о которых мы поговорим чуть позже). Обратите также внимание: в этом ряду всего лишь одно четное – 2, что явно (а можно сказать и – выгодно) отличает ее от остальных простых чисел.

Положительное целое число, для которого имеются 3 и более делителя, называется составным, ведь его можно разложить на более простые. Вот они:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30…

Так, у четверки всего три делителя (1, 2 и 4), у шестерки – четыре (1, 2, 3 и 6) и так далее. Обратите внимание, что числа 1 нет и здесь. Математики называют его единицей, числом с уникальным свойством – быть делителем абсолютно любого целого числа.

Каждое составное число может быть представлено в виде произведения простых чисел. Возьмем для примера 120. Можно начать с 120 = 6 × 20. Но и 6, и 20 – тоже составные. Разложим их сразу на простые: 6 = 2 × 3, 20 = 2 × 2 × 5. Следовательно,

120 = 2 × 2 × 2 × 3 × 5 = 2³3¹5¹

Примечательно то, что, на какие бы составляющие мы ни разложили начальное число, результат получится абсолютно тот же. Причина тому – теорема о единственности разложения, основная теорема арифметики, согласно которой каждое положительное целое число больше 1 раскладывается на произведение простых чисел единственным способом, включая порядок следования сомножителей.

Здесь-то, кстати, и кроется настоящая причина того, что число 1 не может быть названо простым: будучи простым, оно бы делало эту теорему несостоятельной. Ведь тогда 12, например, можно было бы представить не только как 2 × 2 × 3, но и как 1 × 1 × 2 × 2 × 3, и разложение на простые числа не было бы уникальным.

Однажды разложив число, вы узнаете всю его подноготную. В детстве моим любимым числом была девятка, но с возрастом я узнавал и другие, куда более сложные (вроде π = 3,14159…, φ = 1,618…, e = 2,71828… или число i, которое не может быть представлено в виде десятичной дроби, о чем мы подробно поговорим в главе 10) и влюблялся в них без памяти. Какое-то время моим фаворитом было 2520 – наименьшее из чисел, которые делятся на все числа от 1 до 10. Вот как оно выглядит при разложении на простые множители:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.