Рэймонд Смаллиан - Как же называется эта книга? Страница 3

Тут можно читать бесплатно Рэймонд Смаллиан - Как же называется эта книга?. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Рэймонд Смаллиан - Как же называется эта книга?

Рэймонд Смаллиан - Как же называется эта книга? краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Рэймонд Смаллиан - Как же называется эта книга?» бесплатно полную версию:
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Смаллиан - Как же называется эта книга? читать онлайн бесплатно

Рэймонд Смаллиан - Как же называется эта книга? - читать книгу онлайн бесплатно, автор Рэймонд Смаллиан

Чей портрет разглядывает этот человек?

6. Что произойдет, если всесокрушающее пушечное ядро попадет в несокрушимый столб?

Вот еще одна головоломка времен моего детства, которая мне очень нравится. Под всесокрушающим пушечным ядром мы понимаем ядро, сметающее на своем пути все, что попадается, а под несокрушимым столбом — столб, который нельзя ни повалить, ни сломать. Что произойдет, если всесокрушающее пушечное ядро попадает в несокрушимый столб?

7.

Следующая очень простая задача — одна из многочисленных занимательных задач, снискавших широкую известность. В темной комнате стоит шкаф, в ящике которого лежат 24 красных и 24 синих носка. Сколько носков следует взять из ящика, чтобы из них заведомо можно было составить по крайней мере одну пару носков одного цвета? (В этой и в следующей задаче речь идет о наименьшем числе носков.)

8. Новый поворот в предыдущей задаче.

Предположим, что в ящике шкафа лежат несколько синих и столько же красных носков. Известно, что минимальное число носков, которые я должен взять из ящика, чтобы из них заведомо можно было составить по крайней мере одну пару носков одинакового цвета, совпадает с минимальным числом носков, которые требуется взять из ящика, чтобы из них можно было составить по крайней мере одну пару носков разного цвета. Сколько носков в ящике?

9.

Вот многим знакомая логическая задача. Известно, что в Нью-Йорке жителей больше, чем волос на голове у любого из них, и что среди жителей Нью-Йорка нет полностью лысых, у которых на голове не осталось бы ни одного волоса. Следует ли отсюда, что в Нью-Йорке непременно найдутся по крайней мере два жителя с одинаковым числом волос на голове?

Приведем еще один вариант этой задачи, незначительно отличающийся от предыдущего. О населении города Поданк известно следующее.

1. Среди жителей Поданка не найдется двух с равным числом волос на голове.

2. Ни у одного жителя Поданка на голове не растет ровно 518 волос.

3. Жителей в Поданке больше, чем волос на голове любого из них.

Какова наибольшая численность населения Поданка?

10. Кто убийца?

В этой истории речь пойдет о караване, идущем через пустыню Сахару. Однажды караван остановился на ночлег. Обозначим трех главных действующих лиц A, B и C. A ненавидел C и решил убить его, подсыпав яду в бурдюк с питьевой водой (единственным запасом воды, которым располагал C). Независимо от A другой караванщик B также решил убить C и (не зная, что принадлежащая тому питьевая вода уже отравлена) проделал в бурдюке крохотную дырочку, чтобы вода потихоньку вытекала. Через несколько дней C умер от жажды.

Спрашивается, кто убийца? A или B?

Одни считают убийцей караванщика B, поскольку C все равно не успел принять яд, подсыпанный его недругом A, и умер бы, даже если бы A не отравил воду. Другие считают убийцей караванщика A, так как, по их мнению, действия караванщика B не оказали ни малейшего влияния на исход событий: коль скоро A отравил воду, C обречен и умер бы, даже если бы другой его недруг B не проделал дырочку в бурдюке с водой. Чьи рассуждения правильны?

В связи с нашей задачей я вспомнил анекдот о лесорубе, который в поисках работы забрел в лагерь лесозаготовителей. Управляющий встретил его не слишком обнадеживающе. «Не знаю, подойдет ли тебе работа, — сказал он. — Мы здесь валим лес». Лесоруб обрадовался: «Эта работа как раз по мне». Управляющий решил испытать его в деле. «Вот топор, — сказал он. — Посмотрим, сколько времени потребуется тебе, чтобы свалить вон то дерево». Лесоруб бросился к дереву и свалил его одним ударом топора. Управляющий был потрясен, но не сдавался. «Великолепно, — сказал он, — а теперь попробуй повалить вон то большое дерево». Лесоруб подошел к огромному дереву и двумя ударами — трах, бах! — повалил и его. «Невероятно! — воскликнул управляющий. — B жизни не видал ничего подобного. Вы, конечно, приняты! Но где вы научились так валить лес?» «Я изрядно попрактиковался и набил руку в лесу Сахары», — ответил лесоруб. Управляющий на миг задумался. «Вы хотели сказать „в пустыне Сахаре?“» — переспросил он. «Теперь там пустыня», — пояснил лесоруб.

11. Еще один юридический казус.

Двоих судили за убийство. Присяжные признали одного из обвиняемых виновным, а другого невиновным. Судья обратился к тому, кто был признан виновным, и сказал: «Это самое странное дело из всех, которые мне приходилось разбирать. Хотя ваша вина вне всяких сомнений установлена, по закону я должен выпустить вас на свободу».

Как объяснить столь неожиданное заявление судьи?

12. Двое краснокожих.

Двое краснокожих сидели на бревнышке, один повыше ростом, другой пониже. Тот, кто пониже ростом, доводится сыном тому, кто повыше ростом, хотя тот, кто повыше ростом, — не его отец. Как вы это объясните?

13. Часы остановились.

Вот превосходная старинная задача-головоломка. У одного человека не было наручных часов, но зато дома висели точные настенные часы, которые он иногда забывал заводить. Однажды, забыв в очередной раз завести часы, он отправился в гости к своему другу, провел у того вечер, а вернувшись домой, сумел правильно поставить часы. Каким образом ему удалось это сделать, если время в пути заранее известно не было?

14. Задача о медведе.

Эта задача обладает любопытной особенностью: многие слышали ее и знают ответ, но рассуждения, при которых они пытаются обосновать его, совершенно неудовлетворительны. Поэтому, даже если вы считаете, что знаете ответ задачи, проверьте себя, заглянув в решение.

Охотник находится в 100 м к югу от медведя, проходит 100 м на восток, поворачивается лицом к северу, прицеливается и, выстрелив в направлении на север, убивает медведя. Какого цвета медвежья шкура?

Б. Дурацкие штучки

Я долго колебался, не зная, как назвать эту книгу. Перебрал множество названий типа «Занимательная логика», «Логические забавы и развлечения», но никак не мог выбрать подходящее. Тогда я решил заглянуть в Большой энциклопедический словарь. Раскрыв его на статье «Развлечения», я прочитал: «См. Увеселения». Последовав совету, я почерпнул множество полезнейших сведений о буффонаде, играх, забавах, занимательных потехах, проказах, развлечениях, шалостях, шутках, шутовстве и юморе. Я узнал, что можно подшутить над кем-нибудь, устроить розыгрыш, затеять возню, устроить кутерьму, поднять пыль столбом, дым коромыслом и что бывают выходки, проделки, ужимки и даже «дурацкие штучки». Добравшись до этого выражения, я рассмеялся и сказал жене: «Знаешь, мне кажется, что „Дурацкие штучки“ — великолепное название для моей книги». Однако, сколь ни выразительным было бы такое название, оно могло бы создать у читателя неправильное представление о ее содержании в целом, поскольку многие ее разделы вряд ли подходят под него. Тем не менее вы вскоре увидите, что название «Дурацкие штучки» как нельзя лучше подходит для названия этого раздела.

15. Две монеты.

У меня две монеты на общую сумму 15 копеек. Одна из них не пятак. Что это за монеты?

16.

Этот вопрос обращен к тем читателям, которые знают хоть что-нибудь о католицизме. Может ли католик жениться на сестре своей вдовы?

17.

Некто живет на двадцать пятом этаже тридцатиэтажного здания. Каждое утро (кроме субботы и воскресенья) он входит в лифт, спускается вниз и отправляется на работу. Вечером, вернувшись домой, он входит в лифт, поднимается на двадцать четвертый этаж, а оттуда — пешком — еще на один этаж.

Почему он выходит из лифта на двадцать четвертом этаже вместо того, чтобы подняться прямо на двадцать пятый этаж?

18. Грамматический вопрос.

Если вы любите грамматику, то вас, может быть, заинтересует следующий вопрос. Как правильно сказать: «не вижу белый желток» или «белого желтка»?

19. Задача о железнодорожном движении.

Поезд отправляется из Бостона в Нью-Йорк. Через час другой поезд отправляется из Нью-Йорка в Бостон. Оба поезда едут с одной и той же скоростью. Какой из них в момент встречи будет находиться на меньшем расстоянии от Бостона?

20. Наклон крыши.

Крыша одного дома не симметрична: один скат ее составляет с горизонталью угол 60 градусов, другой — угол 70 градусов. Предположим, что петух откладывает яйцо на гребень крыши. В какую сторону упадет яйцо — в сторону более пологого или крутого ската?

21. Сколько девяток?

Вдоль улицы стоят 100 домов. Мастера попросили изготовить номера для всех домов от 1 до 100. Чтобы выполнить заказ, он должен запастись цифрами. Не пользуясь карандашом и бумагой, подсчитайте в уме, сколько девяток потребуется мастеру?

22. Беговая дорожка.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.