Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях Страница 3

Тут можно читать бесплатно Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях

Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях» бесплатно полную версию:
В книге дано лаконичное описание большинства используемых в маркетинге методов и приведено пояснение, для чего они используются. Статистические методы являются для маркетинга одними из основных (если не самыми главными). Поэтому каждый маркетолог должен их знать хотя бы в общих чертах.

Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях читать онлайн бесплатно

Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях - читать книгу онлайн бесплатно, автор Маргарита Акулич

Измерения значений факторов в моделях бинарного выбора – только количественные. В эти модели допускается включение категориальных переменных (выступающих в качестве факторов). В данных моделях обеспечивается построение регрессионной модели зависимости с принятием во внимание вероятности, что результативной дихотомической переменной будет принято значение 0 или 1, если значение факторов – заданное.

Для того чтобы смоделировать вероятность зависимой дихотомической переменной, нужно произвести подбор специальной монотонно возрастающей функции, значения которой могут варьироваться лишь от 0 до 1.

В моделях бинарного выбора в качестве специальной функции может быть выбрана функция: 1) логистическая; 2) стандартного нормального распределения.

Если модель бинарного выбора построена на базе логистической функции, то она рассматривается как логистическая регрессия или логит-модель. Если модель бинарного выбора построена на базе функции, стандартного нормального распределения, то ее рассматривают как пробит-модель.

Посредством логистической регрессии осуществляется прогнозирование вероятности отклика для зависимой переменной от переменных независимых, которые включены в модель. Прогнозные значения вероятности можно использовать для разделения наблюдений на две группы.

При построении модели регрессии логистической можно осуществить отдельный анализ – анализ Receiver Operator Characteristic (ROC-кривых). Посредством данного анализа можно осуществить выбор оптимального порогового значения вероятности для классификации. ROC-кривую используют, чтобы представить результаты бинарной классификации и оценки уровня ее эффективности.

Использование логистической регрессии распространяется на решение задач, связанных с моделированием взаимосвязи и классификацией наблюдений. Она находит применение в скоринге: банковском (на ее основе возможно построение рейтинга заемщиков и управления кредитными рисками); потребительском (для моделирования потребительского поведения).

Регрессия мультиномиальная логистическая

Фото из источника в списке литературы [5]

В качестве логистической регрессии мультиномиальной рассматривают общий случай модели логистической регрессии, в ней у зависимой переменной имеются категории в количестве более двух.

Измерение зависимой переменной (ковариаты) в рассматриваемой регрессии возможно в таких шкалах, как порядковая и номинальная. В качестве нее может выступать переменная потребительского выбора торговой марки. Переменные независимые (факторы) могут быть количественными либо категориальными.

В данной модели для каждой из категорий переменной зависимой предусматривается построение уравнения логистической бинарной регрессии. Причем одной из категорий переменной зависимой отводится роль переменной опорной, и происходит сравнение с ней всех других категорий.

Посредством уравнения мультиномиальной логистической регрессии прогнозируется показатель вероятности принадлежности к каждой категории зависимой переменной согласно значениям переменных независимых.

2.4 Пробит-модель регресси. Регрессия Кокса. Анализ временных рядов

Пробит-модель регрессии

Фото из источника в списке литературы [6]

Пробит-модель является статистической моделью бинарного выбора, используемой для того, чтобы предсказывать вероятность возникновения какого-то события на базе функции нормального стандартного распределения.

Модель пробит-регрессии, подобно модели логистической регрессии, относят к виду моделей бинарного выбора. По этой причине задачи ее построения и функции такие же, как в логит-модели.

В модели пробит-регрессии выражение расчетного значения зависимой переменной выступает в качестве значения функции нормального стандартного закона распределения. Пробит является значением, для которого исследователи вычисляют функцию нормального стандартного распределения. Имеет место зависимость значения пробита от комбинированных линейных значений факторных переменных. Для пробит-модели (также как и для логит-модели) зависимая переменная – дихотомическая. К факторам в пробит-модели предъявляется требование, чтобы они были количественно выраженными либо категориальными, но преобразованными в переменные дихотомические.

Применение пробит-модели относительно сферы аналогично применению логистической регрессии. Если осуществить моделирование и классификацию по пробит-модели и также по модели логистической регрессии, то результаты окажутся весьма сходными. Но в некоторых случаях результаты могут разниться.

Регрессия Кокса

Фото из источника в списке литературы [7]

Регрессионную модель Кокса считают статистической моделью зависимости функции риска от переменных-факторов независимого вида.

Регрессию Кокса рассматривают в качестве модели отличающихся пропорциональностью рисков. Благодаря ей прогнозируют риск наступления события для какого-то объекта и оценивают влияние определенных заранее независимых предикторов (переменных) на данный риск. Риск рассматривают в качестве зависящей от времени функции. Риск не является вероятностью, поэтому его значения могут превышать единицу.

Объектом может быть клиент, для которого в маркетинге практикуется прогнозирование риска наступления некого события. Объект находится в поле зрения априори (то есть его постоянно наблюдают), в любой временной отрезок возможно наступление события, приводящего к его выбытию из группы риска. К примеру, таким событием может оказаться отказ клиента от товара либо услуги компании или его неспособность оплаты кредита.

Конец ознакомительного фрагмента.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.