Джордж Джонсон - Десять самых красивых экспериментов в истории науки Страница 3
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Джордж Джонсон
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 27
- Добавлено: 2019-01-29 10:45:15
Джордж Джонсон - Десять самых красивых экспериментов в истории науки краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джордж Джонсон - Десять самых красивых экспериментов в истории науки» бесплатно полную версию:В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.
Джордж Джонсон - Десять самых красивых экспериментов в истории науки читать онлайн бесплатно
Случилось это, наверное, в 1604 году. Через тридцать лет он, а точнее, Сальвиати, так описал эксперимент:
Берем деревянную болванку или брус длиной 12 локтей, в локоть шириной и толщиной в три пальца, Прорежем в нем желоб шириной чуть более одного пальца. Сделав эту канавку очень прямой, ровной и отполированной и выстелив ее пергаментом, тоже гладким и отполированным настолько, насколько это возможно, начнем катать по ней твердый, гладкий и очень круглый шар.
Флорентийский локоть равен двадцати дюймам, поэтому можно представить, как Галилей прилаживал под определенным углом шестиметровую доску шириной двадцать пять сантиметров.
Установив доску наклонно путем поднятия одного ее конца на два локтя над другим ее концом, мы пускали шарик, как я уже говорил, по желобу, отмечая, как будет описано отдельно, время, необходимое шарику для спуска. Мы повторяли этот эксперимент несколько раз, чтобы измерить время с точностью, не хуже одной десятой сердечного ритма.
Усовершенствовав методику, рассказывал Сальвиати, удалось измерить время, необходимое шарику, чтобы преодолеть одну четвертую пути, две трети, а затем три четверти пути. Эксперименты повторялись при разных углах наклона доски, и всего было проведено то измерений, при этом использовалось простое устройство под названием водяные часы, которые похожи на песочные, только вместо песка в них вода.
Изображение эксперимента с наклонной плоскостью. Скатывающийся шарик заставляет колокольчики звенеть Рис. Элисон КентМы взяли большой сосуд с водой и установили его на некотором возвышении. К днищу этого сосуда была припаяна трубка небольшого диаметра, через которую протекала тонкая струйка воды. В течение каждого спуска вода собиралась в стеклянный кувшин, как за время преодоления всего желоба, так и прохода отдельных частей пути. Собранная после каждого скатывания вода затем взвешивалась на очень точных весах. Разница в весе и соотношение весов давали нам разницу и соотношение времени, причем с такой точностью, что, несмотря на многократное повторение действия, заметного расхождения результатов не наблюдалось.
Вес воды был эквивалентом продолжительности времени. Гениально! Хотя не исключено, что некоторые современные историки науки так и не считают.
К примеру, Александр Койре[3], читая тремя столетиями позже, в 1953 году, эти написанные Галилеем слова, с трудом сдерживал раздражение:
Бронзовый шарик, катящийся по «гладкому и отполированному» деревянному желобу! Сосуд с водой, имеющий небольшое отверстие, через которое вытекала вода и которую собирали в небольшой кувшин для последующего взвешивания, измеряя таким образом время скатывания шарика… Тут целый набор источников ошибок и неточностей! Совершенно очевидно — эксперименты Галилея абсолютно бесполезны.
Койре подозревал, что эксперименты эти вообще не проводились и что Галилей лишь представлял, как скатывается шарик, используя этот пример в педагогических целях как иллюстрацию закона физики, который он сформулировал математически, применяя старомодный метод рассуждений. Казалось, Галилея опять удалось развенчать.
Однако двадцать лет спустя Стилман Дрейк, один из ведущих специалистов по научным трудам Галилея, изучая старинные манускрипты в Центральной национальной библиотеке Флоренции, обнаружил среди них несколько ранее не публиковавшихся страничек с записями самого Галилея.
Галилей не умел расставаться ни со своими вещами, ни с записями, и когда в конце XX века его записные книжки были опубликованы, редактор книги Антонио Фаваро решил опустить несколько страничек, которые ему показались не более чем черновиками каких-то вычислений и диаграмм, не имеющих никакого смысла. Непонятные листочки лежали отдельно, и было неясно, когда Галилей сделал эти записи и над чем он в то время работал.
Дрейк в то время трудился над новым английским переводом «Бесед и математических доказательств, касающихся двух новых отраслей науки». В начале 1972 года он три месяца провел во Флоренции, изучая 160 страниц 72-го тома архива Галилея, сравнивая водяные знаки и почерк, пытаясь разложить страницы в нужном порядке. Самыми ранними оказались страницы с результатами эксперимента 1604 года. Галилей тогда жил в Падуе.
По этим обрывкам Дрейк восстановил эксперимент, проведенный столетия назад, и при небольших допущениях мы теперь можем себе представить ход мыслей Галилея. Он отпускал шарик на самом верху наклонной плоскости и замечал, что поначалу шарик проходит расстояние в 33 точки (Галилей использовал линейку, разделенную на 60 равных отрезков, и расстояние между точками, по мнению Дрейка, должно было равняться примерно одному миллиметру). Когда проходило определенное время, шарик разгонялся и преодолевал расстояние в 130 то — чек, а в конце третьего интервала — 298 точек. Затем 526, 824, 1192, 1620 и т. д., все быстрее и быстрее. Это были данные реального эксперимента. Для последнего отрезка, на котором шарик двигался с максимальной скоростью, Галилей сначала написал 2123 точки, но потом зачеркнул и исправил число на 2104. К некоторым из своих чисел он добавлял знак плюс или минус, который, со всей очевидностью, показывал, когда результаты были несколько выше или ниже приведенного числа.
Использованные им единицы времени значения не имеют. Мы можем их назвать, например, тиками. Главное — то, что все интервалы были одинаковыми:
Поначалу никакой закономерности тут не видно. С каждым тиком шарик преодолевал все большее расстояние, но по какому правилу? Галилей начал играть числами. Может быть, скорость увеличивалась по закону арифметической прогрессии и стоит выписать ряд нечетных чисел: 1, 5, 9, 13, 17, 21…? На втором тике шарик будет двигаться в пять раз быстрее, чем на первом, преодолевая 5 х 33 или 165 точек. Число слишком большое, но может лежать в пределах погрешности эксперимента. Расстояние, преодолеваемое за третий тик, будет уже в девять раз больше: 33 х 9 = 297 точек. Полное совпадение! За четвертый тик шарик пройдет 13 х 33 = 429. Слишком мало… Дрейк видел, как на странице манускрипта Галилей зачеркивает числа и начинает вычисления снова.
За первый тик шарик преодолевает 33 точки, затем 130. А что, если эти числа поделить? 130: зз = 3,9. Расстояние увеличилось почти в четыре раза. За третий тик расстояние увеличилось почти в девять раз по отношению к первоначальному: 298/33. Тогда получается ряд 15,9; 25,0; 36,1; 49,1; 63,8. Он округлил числа и записал их, используя другие чернила и перо, в столбец: 4,9,16, 25,36,49,64.
Он нашел ключ: с небольшой погрешностью можно было утверждать, что пройденное расстояние увеличивалось пропорционально квадрату времени. Если плоскость удлинить, то можно с уверенностью рассчитать, что для следующего тика коэффициент будет равен 81 (9*), а потом последуют 100, 121, 144, 169 и т. д.
В этих расчетах расстояние суммируется: за четыре тика шарик пройдет расстояние в 16 раз больше, чем он прошел к концу первого тика. Но какое расстояние проходит шарик за каждый отдельный отрезок времени и насколько расстояние между третьим и четвертым тиком будет больше расстояния, пройденного между вторым и третьим тиком? Ответ можно найти, используя арифметические методы.
Свойство квадратов таково, что они равняются сумме предшествующих им нечетных чисел: 4 = 1 +3; 9 = 1 + 3 +5; 16 = 1 + 3 + 5 +7. Из закона квадрата времени следует, что расстояние между тиками должно увеличиваться как прогрессия нечетных чисел. Данные Галилео показывают, как это происходит.
От тика к тику шарик преодолевает сначала три первых расстояния, потом пять первых расстояний, потом — девять. По сути, Галилей мог взять прогрессию нечетных чисел и получить отношение, равное квадрату времени. Но как бы он к этому выводу ни пришел, результатом его исследований стало открытие нового фундаментального закона. Чем круче наклонная, тем быстрее будет двигаться шарик, придерживаясь тем не менее одного и того же закона, который, вероятно, должен соблюдаться даже тоща, когда наклон достигнет 90°, т. е. шарик начнет падать вниз по прямой.
При другом крайнем случае, когда угол наклона равен нулю, ускорения движения не произойдет. Как только шарик, скатывающийся по наклонной' плоскости, достигнет плоскости стола, он будет двигаться равномерно сколь угодно долго, если плоскость будет бесконечной, а трение отсутствовать. Но что произойдет, когда шарик достигнет края стола и начнет падать? Галилей дает ответ на этот вопрос в книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки»: не ускоряющееся горизонтальное движение и ускоряющееся вниз вертикальное движение объединяются и дают траекторию, имеющую форму параболы.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.