Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии. Страница 31

Тут можно читать бесплатно Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии.. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии.

Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии. краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии.» бесплатно полную версию:
Известный американский биохимик, популяризатор науки и писатель-фантаст А. Азимов знакомит читателя с предметом химии, историей возникновения и развития основных идей и представлений.

Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии. читать онлайн бесплатно

Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии. - читать книгу онлайн бесплатно, автор Айзек Азимов

Американский химик (уроженец России) Фебус Аарон Теодор Левин (1869—1940) работал в другом направлении. Он изучал строение нуклеотидов — тех блоков, из которых построены гигантские молекулы нуклеиновых кислот. (В настоящее время установлено, что нуклеиновые кислоты управляют химическими процессами, протекающими в организме человека.) Правильность выводов Левина полностью подтвердили результаты работы шотландского химика Александра Робертуса Тодда (род. в 1907 г.), который в 40-х — начале 50-х годов нашего века синтезировал ряд нуклеотидов и родственных им соединений.

Некоторые из этих соединений, в частности алкалоиды, применяются в медицине и, следовательно, попадают под общую рубрику лекарственные средства. В самом начале XX в. было показано, что ряд синтезированных соединений может использоваться в медицине как лекарственные средства.

В 1909 г. немецкий бактериолог Пауль Эрлих (1854—1915) применил при лечении сифилиса синтетическое соединение сальварсан. Таким образом было положено начало исследованиям в области химиотерапии — лечения болезней с применением специальных химических препаратов.

В 1908 г. было синтезировано соединение, названное сульфаниламидом (аминобензолсульфамид), которое пополнило обширный ряд синтетических соединений, не нашедших применения. Однако в 1932 г. благодаря исследованиям немецкого химика Герхарда Домагка (1895—1964) было установлено, что сульфаниламид и некоторые родственные ему соединения можно использовать для лечения ряда инфекционных заболеваний. Правда, в этой области природные соединения оказались более эффективными, чем синтетические. Примером тому может служить пенициллин — первый антибиотик, который был случайно открыт в 1928 г. шотландским бактериологом Александром Флемингом (1881—1955). Флеминг оставил на несколько дней открытой культуру стафилококковых бактерий, а затем обнаружил, что она покрылась плесенью. Внимательно разглядывая плесень, Флеминг увидел, что вокруг каждого пятнышка плесени располагаются «чистые» области, где культура бактерий исчезла. Флеминг на уровне своего времени изучил этот факт и предположил, что в этих «чистых» областях присутствует соединение с сильным антибактериальным действием, однако выделить это соединение оказалось непростым делом.

В связи с острой необходимостью в лекарственных средствах, необходимых для борьбы с инфекционными заболеваниями, во время второй мировой войны интерес к такого рода соединениям значительно возрос, и этой проблемой начали заниматься более обстоятельно.

Группе ученых под руководством английского биохимика-патолога (уроженца Австралии) Хоуарда Уолтера Флори (1898—1968) и английского биохимика (уроженца Германии) Эрнста Бориса Чейна (род. в 1906 г.) удалось выделить пенициллин и определить его строение. К 1945 г. была разработана технология получения пенициллина с использованием культуры плесени, которая позволяла получать полтонны продукта в месяц.

В 1958 г. химики научились «снимать» с готового пенициллина бензильную группу и присоединять взамен нее другие органические группы. Некоторые из этих полусинтетических веществ, не имеющих аналогов среди природных соединений, обладали более высокой антибактериальной активностью, чем сам пенициллин. Между 40-ми и 50-ми годами из различных видов микроорганизмов были выделены и другие антибиотики, в частности стрептомицин.

В ходе синтеза сложных органических соединений необходимо время от времени проводить анализ с целью идентификации продуктов, образующихся на разных стадиях процесса. Количество вещества, которое можно было бы отобрать для анализа, как правило, весьма невелико, и поэтому анализ в лучшем случае давал неточные результаты, а в худшем и вовсе был невозможен.

Австрийский химик Фриц Прегль (1869—1930) удачно модифицировал оборудование, используемое при анализе, уменьшив его размеры. Он создал особо точные весы, сконструировал образцы тонкой стеклянной посуды, а к 1913 г. разработал методику микроанализа. С этого времени анализ малых проб стал точным.

Классическими методами анализа обычно называют определение объема вещества, расходуемого при реакции (объемный анализ, иначе титриметрический анализ), или массы вещества, полученного в результате реакции (весовой анализ, иначе гравиметрический анализ). В XX в. были разработаны новые, физические, методы анализа, а именно измерение поглощения света, изменения электрической проводимости и другие более тонкие и более сложные методы [90].

Белки

Почти все органические соединения, перечисленные в предыдущем разделе, состоят из молекул, количество атомов в которых чаще всего не превышает пятидесяти; эти атомы с трудом распадаются в условиях умеренной химической обработки. Однако существуют органические соединения с поистине гигантскими молекулами, построенными из тысяч и даже миллионов атомов. Эти молекулы состоят из сравнительно небольших «строительных блоков» [91]. Такие гигантские молекулы легко разложить на образующие их блоки, которые можно исследовать. Так, например, поступил Левин, изучая нуклеотиды (см. предыдущий раздел). Предпринимались также попытки изучать эти гигантские молекулы как таковые, не разрушая их предварительно. Первые шаги в этом направлении предпринял шотландский химик Томас Грэхем (1805—1869). Заинтересовавшись диффузией — движением частиц среды, приводящим к переносу вещества и выравниванию концентраций, он начал изучать диффузию газов через мельчайшие поры или тонкие трубки. В 1829 г. ему удалось показать, что скорость диффузии газа обратно пропорциональна корню квадратному из его плотности (закон Грэхема).

Далее Грэхем перешел к изучению диффузии растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару или сульфату меди, проходят через разделяющую перегородку из пергаментной бумаги (имеющей, как он предполагал, микроскопические поры). В то же время растворы таких соединений, как гуммиарабик, животный клей и желатина, пройти через разделяющую перегородку не могут — очевидно, молекулы соединений последней группы для этого слишком велики.

Соединения, способные проходить через поры пергамента (и, как выяснилось, легко кристаллизующиеся), Грэхем назвал кристаллоидами. Соединения другой группы, не способные, подобно животному клею (по-гречески κόλλα). проходить через поры пергамента, он назвал коллоидами. Наука о гигантских молекулах стала впоследствии важным разделом коллоидной химии, которой, таким образом, Грэхем положил начало [92].

Предположим, что с одной стороны разделяющей перегородки находится чистая вода, а с другой — коллоидный раствор. Молекулы воды могут свободно проникать через перегородку в оба отсека. В первый момент в отсек с коллоидным раствором будет попадать большее число молекул воды, чем покидать его, поскольку выравнивание концентраций по обе стороны перегородки — самопроизвольный энергетически выгодный процесс. Суммарный поток молекул воды в отсек с коллоидным раствором будет продолжаться до тех пор, пока возникающая разность давлений жидкости с обеих сторон перегородки не достигнет определенной величины. Величина этого давления, приводящего к вынужденному равновесию, называется осмотическим давлением раствора.

В 1877 г. немецкий ботаник Вильгельм Пфеффер (1845—1920) показал, как можно измерить осмотическое давление и как, исходя из полученных результатов, можно определить молекулярную массу больших молекул, образующих коллоидные растворы. Это был первый удачный метод оценки размера таких молекул.

В 1923 г. шведский химик Теодор Сведберг (1884—1971) сконструировал центрифугу и разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков.

Ассистент Сведберга Арне Вильгельм Каурин Тиселиус (1902—1971), также швед, в 1923 г. разработал более совершенный метод разделения гигантских молекул, основанный на характере распределения электрического заряда по поверхности молекулы. Этот способ — электрофорез — оказался особенно важным при разделении и очистке белков.

С помощью физических методов химики могли получить представление об общей структуре гигантских молекул, однако они стремились установить детальное строение этих соединений. Особый интерес вызывали у них белки.

В то время как гигантские молекулы таких веществ, как крахмал или клетчатка древесины, построены из одного многократно повторяемого блока, молекула белка строится из двадцати различных, но тесно связанных блоков — различных аминокислот (см. гл. 6). Именно по этой причине молекулы белков так разнообразны, но это же создает большие трудности при попытке их характеризовать.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.