Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью Страница 31

Тут можно читать бесплатно Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью

Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью» бесплатно полную версию:
В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.

Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью читать онлайн бесплатно

Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью - читать книгу онлайн бесплатно, автор Леонард Млодинов

Чтобы разобраться, где ошибся врач, прибегнем к методу Байеса. Первым делом очертим пространство элементарных событий. Можно включить в него всех, кто когда-либо сдавал анализы на ВИЧ, но мы получим более точные результаты, если примем во внимание некоторые дополнительные, имеющие непосредственное отношение к теме сведения обо мне: рассмотрим только гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, которые сдавали анализы на ВИЧ. (Далее мы увидим, какое это имеет значение.)

Теперь, когда мы знаем, кого следует включить в пространство элементарных событий, распределим членов этого пространства по категориям. Вместо деления на мальчиков и девочек выберем деление на тех, кто у кого анализы оказались ВИЧ-положительными и кто ВИЧ-положителен (истинная положительность), тех, у кого анализы оказались положительными, но кто на самом деле не положителен (ложная положительность), тех, у кого анализы оказались ВИЧ-отрицательными и кто ВИЧ-отрицателен (истинная отрицательность), тех, у кого анализы оказались ВИЧ-отрицательными, но кто на самом деле ВИЧ-положителен (ложная отрицательность).

Наконец задаем вопрос: сколько людей в каждой из этих категорий? Предположим, мы рассматриваем изначально население из 10 000 человек. Пользуясь статистическими данными Центра по контролю и профилактике заболеваемости, подсчитаем, что в 1989 г. около 1 из 10 000 гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, сдавших анализы, оказались ВИЧ-инфицированными{107}. Предположим, что в категории «ложная отрицательность» показатель равен 0, тогда около 1 человека из каждых 10 000 сдавших анализы окажется положительным из-за наличия инфекции. К тому же поскольку показатель «ложной отрицательности» равен, по словам врача, 1 из 1 000, наберется около 10 тех, кто не заражен ВИЧ, однако анализы которых тем не менее окажутся положительными. У остальных 9 989 человек из 10 000, составляющих пространство элементарных событий, результаты анализов окажутся отрицательными.

Теперь «урежем» пространство элементарных событий — включим в него только тех, результаты анализов которых оказались положительными. У нас останется 10 человек из категории «ложная положительность» и 1 человек из категории «истинная положительность». Другими словами, лишь 1 человек из 11, результаты анализов которых оказались положительными, действительно ВИЧ-инфицирован. Врач сказал мне: вероятность того, что в анализе ошибка — на самом же деле я был совершенно здоров, — равна 1 из 1 000. А на самом деле ему следовало сказать следующим образом: «Не волнуйтесь, шансы на то, что вы на самом деле не инфицированы, выше 10 из 11». В моем случае на результаты пробы для выявления скрытой формы заболевания повлияли определенные метки, которые присутствовали в моей крови, хотя вирус, ради которого и брали пробу, отсутствовал.

При оценке любого диагностического испытания важно знать, каков показатель «ложной положительности». Например, анализ, который выявляет 99% всех злокачественных опухолей, производит сильное впечатление, однако я с легкостью могу придумать анализ, который выявляет 100% всех злокачественных опухолей. Для этого мне только и надо что находить у каждого осматриваемого пациента опухоль. Статистический показатель, отличающий мой анализ от действительно полезного, заключается в следующем: в результате моего анализа показатель «ложной положительности» окажется высоким. Однако вышеприведенный пример демонстрирует: осведомленности о показателе «ложной положительности» недостаточно для того, чтобы определить, полезен анализ или не полезен. Необходимо также знать, как показатель «ложной положительности» соотносится с истинной распространенностью заболевания. Если заболевание обычное, положительный результат будет гораздо более убедительным. Чтобы увидеть, как истинная распространенность связана с положительными результатами анализа, предположим, что я гомосексуалист, и результаты анализа у меня положительные. Предположим, что в сообществе гомосексуалистов вероятность заражения среди тех, кто сдал анализы в 1989 г., была около 1%. Что значит: среди результатов 10 000 анализов мы должны обнаружить не 1 (как ранее), а 100 «истинно положительных» вместе с 10 «ложно положительными». Таким образом, в данном случае вероятность того, что положительный результат означал мою инфицированность, должна была равняться 10 из 11. Вот почему при оценке результатов неплохо выяснить: относитесь вы к группе повышенного риска или нет.

Теория Байеса говорит о следующем: вероятность того, что А произойдет, если произойдет В, обычно отличается от вероятности того, что В произойдет, если А произойдет{108}. Что не принимается во внимание и является частой ошибкой среди врачей. Например, во время исследований в Германии и США терапевтов попросили подсчитать вероятность того, что не обнаруживающая симптомов рака женщина в возрасте между 40 и 50, чья маммограмма показывает рак, на самом деле больна раком груди, если при этом в 7% случаев маммограммы диагностируют рак, когда на самом деле его нет{109}. Кроме того, врачам сообщили, что в реальности частота возникновения заболевания равна примерно 0,8% и что «ложно отрицательные» результаты равны примерно 10%. Принимая все вышесказанное во внимание, можно с помощью метода Байеса определить, что «положительная» маммограмма диагностирует рак лишь примерно в 9% всех случаев. Однако в немецкой группе треть врачей пришли к выводу, что вероятность равна примерно 90%, а срединное значение оказалось равно 70%. В американской группе у 95 из 100 врачей вероятность оказалась равна примерно 75%.

Подобная же ситуация складывается и с проверкой спортсменов на допинг. Цифры, на которые часто ссылаются, на самом деле не соответствуют действительности, являясь относительным числом ложно положительных заключений. И дают искаженное представление о вероятности того, что спортсмен виноват в приеме допинга. Например, Мэри Дэкер Слэни, бегунья мирового класса и чемпионка 1983 г. в забегах на 1 500 и 3 000 м, пыталась снова вернуться в спорт, когда на отборочных соревнованиях в Атланте в 1996 г. ее обвинили в приеме допинга — вещество попало в организм при употреблении тестостерона. После всевозможных обсуждений ассоциация (с 2001 г. официально именуемая Международной ассоциацией легкоатлетических федераций) вынесла решение: Слэни «была виновна в злоупотреблениях, связанных с приемом допинга», которое по сути дела поставило крест на ее спортивной карьере. Согласно некоторым свидетельским показаниям в деле Слэни, «относительное число ложно положительных заключений» применительно к анализу мочи спортсменки могло доходить до 1%. Видимо, поэтому многие легко согласились со следующим: вероятность вины спортсменки равна 99%. Однако мы уже убедились в том, что это неверно. Предположим, анализы сдали 1 000 спортсменов, 1 из 10 был признан виновным, а результаты анализа, выданные признанному виновным спортсмену, представляли собой 50% вероятность злоупотребления допингом. Далее из каждой 1 000 проверенных спортсменов 100 оказались бы виновными, а результаты анализов указали бы на 50 из этих 100. Тем временем из 900 невиновных спортсменов по результатам анализов выделились бы 9 человек. Таким образом, в действительности анализы на выявление допинга означали вовсе не то, что вероятность вины спортсменки равнялась 99%, скорее всего, цифра была: 50/59 = 84,7%. Другими словами, если иметь в виду свидетельства, у вас должна быть такая же степень уверенности в том, что Слэни виновна, как и в том, что если она подбросит кость, число 1 не выпадет. Это, конечно же, не исключает разумные основания для сомнения, но важно вот что: соответствующие заключения, основанные на масштабной проверке (90 000 спортсменов ежегодно сдают мочу на анализы), равносильны обвинению большого числа невиновных спортсменов{110}.

В сфере права такую ошибку перестановки двух элементов иногда называют «ошибкой обвинения», поскольку обвинитель часто прибегает к подобному типу ошибочного довода, подводя присяжных заседателей к обвинительному приговору подозреваемого, хотя доказательства и неубедительны. Например, рассмотрим имевшее место в Британии дело Салли Кларк{111}. Первый ребенок Кларк умер в возрасте 11 недель. Как было сказано, смерть ребенка наступила в результате синдрома внезапной смерти ребенка грудного возраста — этот диагноз ставится, когда ребенок умирает внезапно, а вскрытие не проясняет причины смерти. Кларк снова забеременела. Ее второй ребенок прожил 8 недель, а затем умер по той же причине — синдром внезапной смерти. После этого случая Кларк была арестована: ей предъявили обвинение в том, что она задушила обоих детей. Во время судебных слушаний обвинение вызвало в качестве эксперта педиатра, Роя Мидоу, который свидетельствовал: учитывая редкость синдрома, вероятность того, что оба ребенка умерли именно по этой причине, равны 73 млн к 1. Обвинитель не предъявил никакого другого существенного свидетельства против Кларк. Могло ли такое свидетельство эксперта оказаться достаточным для вынесения обвинительного приговора? Присяжные решили, что могло, и в ноябре 1999 г. Кларк посадили.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.