Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки Страница 4
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Роберт Криз
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 54
- Добавлено: 2019-01-29 12:30:59
Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки» бесплатно полную версию:Может ли наука быть красивой? Автор этой книги, известный философ и историк науки Роберт Криз, уверен, что именно красота делает научный эксперимент по-настоящему убедительным. «Призма и маятник» – это увлекательное научное путешествие длиной в 2500 лет: от первых опытов Эратосфена по измерению окружности Земли до последних открытий в области физики элементарных частиц. Детальное описание великих экспериментов поможет нам понять, как устроено мышление гениальных ученых, сумевших открыть и наглядно продемонстрировать нам фундаментальные основы мира, в котором мы живем.
Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки читать онлайн бесплатно
Но великий мыслитель предложил и более хитроумные аргументы. Из сообщений путешественников и участников военных экспедиций ему было известно, что слоны водятся в отдаленных землях как в Африке, так и в Азии. Из этого он сделал вывод, что названные части света, по-видимому, соединены, – вполне логичное, хоть и не совсем конкретное заключение. Другие греческие ученые выдвигали и другие аргументы в пользу шарообразности Земли, которые включали разницу во времени восхода и заката в разных странах и то, что отплывающие корабли постепенно скрываются из виду, как бы опускаясь за горизонт.
Однако ни одно из приведенных доказательств не отвечало на главный вопрос: насколько велика эта круглая Земля? И возможно ли вообще узнать ее размеры, не обойдя ее по всей окружности с измерительными приборами?
До Эратосфена на сей счет существовали только догадки. Самая ранняя из них принадлежит Аристотелю, который писал, что «те математики, которые берутся вычислять величину [земной] окружности, говорят, что она составляет около четырехсот тысяч [стадиев]»12. Однако он не сообщает ни источников данной цифры, ни ее оснований. Кроме того, эти данные невозможно точно перевести в современные меры длины. Стадий соотносился с протяженностью греческого скакового круга, который различался от города к городу. Используя приблизительные соответствия с современными мерами длины, ученые приходят к выводу, что Аристотель оценивал длину земной окружности более чем в 40 000 миль (в реальности она составляет примерно 24 900 миль). Архимед, создавший модель космоса, в которой небесные тела вращались друг вокруг друга, давал несколько меньшее число, чем Аристотель, – 300 000 стадий (более 30 000 миль). Но он, равно как и его предшественник, никак не обосновывает свои оценки.
И вот появляется Эратосфен. Младший современник Архимеда, Эратосфен родился в Северной Африке и получил образование в Афинах. Эрудиция его была почти безгранична, он был знатоком во многих областях – от литературной критики и поэзии до географии и математики. Но он ни в чем не достиг первенства, из-за чего современники присвоили Эратосфену саркастическое прозвище Бета (вторая буква греческого алфавита) с намеком на то, что он во всем был только вторым. Несмотря на подобные насмешки, его таланты и блестящие познания были широко известны, a в середине третьего столетия до нашей эры царь Египта Птолемей III пригласил Эратосфена учителем к своему сыну, а позднее назначил его руководителем знаменитой Александрийской библиотеки.
Это была первая и крупнейшая библиотека такого рода, созданная царями из правившей в Египте династии Птолемеев в ходе строительства Александрии, культурной столицы эллинистического мира. Библиотека стала местом встречи ученых всех стран, а Александрия превратилась в важнейший интеллектуальный центр. Здесь, к примеру, жил и преподавал Евклид. В Александрии библиотекари собрали обширную коллекцию рукописей по широчайшему диапазону тем, и ею мог воспользоваться любой ученый. (Помимо всего прочего, Александрийская библиотека была первым известным учреждением подобного рода, в котором рукописи были упорядочены по имени автора в алфавитном порядке [2].)
Эратосфен написал два сочинения по географии, очень важные для античного мира. Трехтомник «Географика» представлял собой первую попытку картографирования мира с использованием параллелей (линий, параллельных экватору) и меридианов (линий, которые проходят через оба полюса и данную точку на карте). Его «Измерения мира» содержали первые известные описания способов измерения размеров Земли. К несчастью, обе работы утеряны, и нам приходится восстанавливать логику рассуждений Эратосфена на основании замечаний других древних авторов, знакомых с его работами13. На наше счастье, таковых было довольно много.
Эратосфен начал свои рассуждения с предположения, что если Земля – небольшое шарообразное тело в огромной Вселенной, то другие составные части Вселенной, такие как Солнце, располагаются довольно далеко – так далеко, что его лучи можно считать параллельными независимо от того, в каком месте они падают на Землю. Эратосфену также было известно, что по мере того, как солнце поднимается вверх по небосводу, тени становятся короче, а из рассказов путешественников он знал, что во время летнего солнцестояния в городе Сиена (современный Асуан) солнце в полдень достигает зенита и находится прямо над головой и тогда исчезают тени у всех вертикальных предметов – будь то колонны, столбы и даже гномоны солнечных часов, главная функция которых как раз и состоит в отбрасывании тени. На несколько мгновений солнечные лучи даже достигают дна городского колодца, освещая всю его поверхность, «подобно пробке, идеально подходящей к отверстию», как сообщает один древний источник14. (Я, конечно, немного неточен: тени не исчезали полностью, а просто падали прямо под предметами, в другое же время они падают сбоку от них.)
Помимо этого, Эратосфену было известно, что Александрия располагается к северу от Сиены и примерно на том же меридиане. Благодаря царским землемерам, которых египетское правительство ежегодно – после сезонных разливов Нила – посылало измерять и наносить на карту границы полей, ученый знал, что оба города находятся на расстоянии пяти тысяч стадиев друг от друга (это число было, конечно, приблизительным, поэтому использовать упомянутую информацию для установления точного соответствия между стадиями и современными мерами длины невозможно).
В сегодняшних терминах Сиена располагалась на Тропике Рака, воображаемой линии, опоясывающей мир и проходящей через северную Мексику, южный Египет, Индию и южный Китай (ее можно увидеть на большинстве глобусов). Для всех точек на ней характерна одна необычная особенность: солнце находится прямо над головой только один раз в году, в самый долгий световой день – 21 июня, день летнего солнцестояния. Те, кто живет к северу от Тропика Рака, никогда не видят солнце непосредственно над головой, и предметы всегда отбрасывают тени. Те же, кто живет в Северном полушарии к югу от Тропика Рака, видят солнце прямо над головой дважды в год: один раз – перед днем летнего солнцестояния и один раз – после. Непосредственная дата зависит от того, где расположена данная местность. Причина упомянутого явления заключается в положении Земли, ось которой наклонена по отношению к плоскости орбиты ее обращения вокруг Солнца.
Однако совсем другое занимало сейчас мысли Эратосфена. Для него главным было то, что в момент, когда солнце стоит прямо над головой в Сиене, оно не находится в зените ни в одном другом месте к северу и к югу от нее, включая и Александрию. Во всех остальных местах гномон солнечных часов отбрасывает тень. Длина же тени должна зависеть от кривизны земной поверхности. Чем больше кривизна, тем длиннее будет тень в таком месте, как, например, Александрия.
Эратосфен обладал достаточными познаниями в геометрии, чтобы разработать весьма изящный эксперимент, на основе которого он смог вычислить меру названной кривизны и, исходя из этого, определить протяженность земной окружности.
Чтобы оценить красоту данного эксперимента, нет нужды знать что-либо конкретное о том, как Эратосфен проводил его. Это очень удачное обстоятельство, так как нам практически ничего неизвестно об условиях его проведения. Эксперимент известен нам лишь по далеко не полным описаниям современников и учеников Эратосфена, многие из которых, очевидно, даже не до конца понимали то, что именно они описывают. Нет необходимости знать что-либо о логике рассуждений ученого: что непосредственно пробудило его интерес к данной проблеме, какими были его первые шаги в разработке будущего эксперимента, встречал ли он какие-либо препятствия на своем пути, как он реализовал свой проект и к каким дальнейшим научным изысканиям это привело. Конечно, можно лишь сожалеть о подобном недостатке информации, так как может сложиться впечатление, что идея пришла к Эратосфену в виде некого озарения, как гром среди ясного неба. Но как бы то ни было, отсутствие всех этих деталей не мешает нашему пониманию сути эксперимента. У нас не возникает необходимости предаваться интеллектуальным спекуляциям, углубляться в сложные математические вычисления или строить догадки, основанные на сомнительных эмпирических данных. Красота эксперимента Эратосфена состоит в том, что он доказал возможность производить измерения космического масштаба, измеряя длину крошечной тени.
Поразительную простоту и элегантность иллюстрируют две диаграммы на рис. 2 и 3.
Во время солнцестояния, когда солнце в Сиене находится прямо над головой (А), тени исчезают – они падают по направлению прямо к центру Земли (линия АВ). Тени в Александрии (Е) в этот момент также падают в том же самом направлении (CD), так как солнечные лучи условно параллельны друг другу. Но так как земная поверхность искривлена, они падают под небольшим углом, который мы назовем х. Небольшой угол (короткая тень) означал бы, что земная поверхность относительно плоская и что, следовательно, Земля имеет очень большую окружность. Большой угол (или длинная тень) будет означать сильное искривление и, соответственно, небольшую окружность. Однако существует ли способ точного измерения длины земной окружности по длине тени? Такой способ дает геометрия.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.