Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать Страница 5

Тут можно читать бесплатно Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать» бесплатно полную версию:
Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.Книга будет полезна всем, кто интересуется устройством мира.

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать читать онлайн бесплатно

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать - читать книгу онлайн бесплатно, автор Брайан Кокс

Ученые XXI столетия с завистью оглядываются на события начала XIX века. Фарадею не надо было сотрудничать с 10 тысячами ученых и инженеров в CERN[5] или запускать на орбиту телескоп размером с два автобуса, чтобы сделать выдающиеся открытия. CERN Фарадея вполне помещался на его столе и позволял ему вести наблюдения, приведшие к разрушению понятия абсолютного времени. Безусловно, за многие столетия масштаб науки изменился – отчасти потому, что те аспекты окружающего мира, которые не требуют высокотехнологичного оборудования для проведения наблюдений, уже досконально изучены. Нельзя сказать, что в современной науке нет примеров, когда простые эксперименты дают важные результаты, но в общем случае, чтобы раздвинуть границы познания, нужна сложная техника. В Лондоне начала викторианской эпохи Фарадею не требовалось ничего более экзотического или дорогого, чем моток проволоки, магниты и компас, чтобы получить первые экспериментальные доказательства того, что время представляет собой совсем не то, чем нам кажется. Он собрал их, занимаясь тем, что больше всего нравится ученым, – просто работал с недавно открытым электричеством, играл с ним и внимательно наблюдал. Вы можете представить эти темные лакированные столы с тенями от проводов, колеблющимися в свете газовых ламп. Хотя Дэви и поразил публику демонстрацией электрического света в 1802 году в Королевском институте, миру пришлось ждать почти до конца столетия, пока в 1870 году Томас Эдисон не создал пригодную для применения лампочку накаливания. Но в начале XIX века электричество было совершенно новой областью физики и инженерного дела.

Фарадей обнаружил, что если двигать магнит через катушку провода, то во время перемещения магнита в проводе генерируется электрический ток. Он также заметил, что если передать импульс электрического тока по проводу, то стрелка компаса, расположенного вблизи этого провода, отклонится от равновесного состояния. Компас представляет собой не более чем детектор магнитного поля. При отсутствии электрических импульсов в проволоке он выравнивается по направлению магнитного поля и указывает на северный полюс Земли. Таким образом, электрические импульсы создают магнитное поле, такое же, как и магнитное поле Земли, хотя и более мощное – поскольку оно сильно отклоняет стрелку компаса во время прохождения импульса электрического тока. Фарадей понял, что обнаружил глубинную связь между магнетизмом и электричеством, двумя явлениями, которые на первый взгляд кажутся абсолютно не связанными друг с другом. Что общего у электрического тока, проходящего через лампочку, когда вы щелкаете выключателем на стене в гостиной, с силой, притягивающей магнитные игрушки к двери вашего холодильника? Безусловно, такая связь неочевидна, но все же Фарадей посредством внимательных наблюдений установил, что электрический ток создает магнитное поле, а движущиеся магниты генерируют электрический ток. Эти два простых явления, которые сегодня известны как электромагнитная индукция, лежат в основе как производства электроэнергии на всех электростанциях, так и работы любых электродвигателей, используемых нами каждый день, – от компрессора в холодильнике до механизма извлечения диска в DVD-плеере. Вклад Фарадея в развитие индустриального мира трудно переоценить.

Однако достижения в фундаментальной физике редко связаны только с экспериментами. Фарадей хотел понять механизм, лежавший в основе его наблюдений. «Как может быть, – спрашивал он себя, – что магнит, физически не подключенный к проводу, тем не менее генерирует в нем электрический ток? И как может импульс электрического тока заставить повернуться стрелку компаса?» Для этого сквозь пустое пространство между магнитом, проволокой и компасом должно пройти какое-то воздействие: катушке проволоки необходимо почувствовать магнит, проходящий через нее, а стрелке компаса – протекающий на расстоянии ток. В наше время это воздействие известно как электромагнитное поле. Мы уже использовали слово «поле» в контексте магнитного поля Земли. Поскольку это слово употребляется в повседневной жизни, вы, вероятно, не обратили на него никакого внимания. На самом деле поля – одно из наиболее абстрактных понятий в физике. С ними также связана одна из самых плодотворных концепций, необходимых для развития более глубокого понимания природы. Уравнения, лучше всего описывающие поведение миллиардов субатомных частиц, из которых состоит эта книга, а также рука, которой вы ее держите перед глазами, и сами ваши глаза – это уравнения полей. Фарадей представлял себе поля в виде совокупности линий (он их называл линиями тока), исходящих из магнитов и токоведущих проводов. Если вы когда-либо подносили магнит под лист бумаги, на который насыпаны железные опилки, то наверняка видели эти линии. Простым количественным примером поля, с которым вы ежедневно сталкиваетесь, может служить температура воздуха в вашей комнате. Возле радиатора воздух будет горячее, возле окна – прохладнее. Представьте, что вы измерили температуру воздуха в каждой точке комнаты и записали это огромное количество чисел в таблицу. Эта таблица – формальное описание температурного поля в вашей комнате. В случае магнитного поля вы можете представить, что фиксируете отклонение стрелки компаса в каждой точке помещения и составляете формальное описание магнитного поля в комнате. Поле субатомных частиц еще более абстрактно. Его значение в той или иной точке пространства говорит о вероятности обнаружения частицы в этой точке в тот момент, когда вы на нее посмотрите. Мы снова встретимся с этими полями в главе 7.

Вы можете задать вполне резонный вопрос: зачем вообще вводить абстрактное понятие поля? Почему бы не работать с тем, что поддается измерению, – с электрическим током и отклонением стрелки компаса?

Фарадей нашел эту идею привлекательной, потому что в глубине души был практиком – черта, свойственная многим великим экспериментаторам и инженерам времен промышленной революции. Он инстинктивно создал в воображении механическую картину связи между движущимися магнитами и катушкой провода, и поля в его представлении служили мостами, устанавливавшими физическую связь между объектами, которая, согласно его экспериментам, обязательно должна существовать. Однако имеется и более веская причина того, почему поля необходимы и почему современные физики считают их такими же реальными, как электрический ток или отклонения стрелки компаса. Ключ к этому глубокому пониманию природы лежит в работах шотландского физика Джеймса Максвелла. В 1931 году, к столетию со дня рождения Максвелла, Эйнштейн описал его труды по теории электромагнетизма как «самые глубокие и плодотворные работы в физике со времен Ньютона». В 1864 году, за три года до смерти Фарадея, Максвеллу удалось вывести систему уравнений, описывающую все электрические и магнитные явления, которые обнаружил и скрупулезно задокументировал Фарадей и многие другие ученые в первой половине XIX столетия.

Уравнения – самый мощный инструмент физиков, помогающий им в стремлении познать окружающий мир. Но в то же время это одна из наиболее кошмарных вещей, с которыми большинство из нас сталкивается в школьные годы. Прежде чем продолжить, мы должны обратиться к тем читателям, у которых появились дурные предчувствия. Понятно, что у вас разная математическая подготовка и вы по-разному относитесь к формулам и уравнениям. Мы просим тех, кто уверен в себе и своих знаниях, проявить терпение и надеемся, что вы не почувствуете себя слишком уязвленными нашей подачей материала. На простейшем уровне уравнение позволяет предсказать результаты эксперимента даже без необходимости его проведения. Очень простой пример, который мы будем использовать в книге для доказательства всяких невероятных фактов о природе пространства и времени, – знаменитая теорема Пифагора, связывающая длины сторон прямоугольного треугольника.

Пифагор утверждал, что квадрат гипотенузы равен сумме квадратов катетов. Математически теорему Пифагора можно записать как x² + y² = z², где z – длина гипотенузы (самой длинной стороны прямоугольного треугольника), а x и y – длины двух других сторон, называемых катетами (рис. 1). Символы x, y и z рассматриваются как заполнители для фактических длин сторон, а x² – математическая запись, означающая x, умноженный на x. Например, 32 = 9, 72 = 49 и так далее. В использовании символов x, y и z нет ничего особенного. Мы могли бы применить в качестве заполнителя любой символ. Возможно, теорема Пифагора покажется вам более понятной, если мы запишем ее как . В этот раз длина гипотенузы представлена смайликом. Вот пример применения теоремы: если длины катетов прямоугольного треугольника равны трем и четырем сантиметрам, то, согласно теореме Пифагора, длина гипотенузы этого треугольника будет равна пяти сантиметрам, поскольку 32 + 42 = 52. Безусловно, числа не обязательно должны быть целыми. Измерение длин сторон треугольника с помощью линейки – это эксперимент, хотя и довольно скучный. Пифагор избавил нас от проблем, выведя уравнение, позволяющее вычислить длину третьей стороны прямоугольного треугольника, зная длины двух других. Ключевой момент состоит в том, что для физика уравнения выражают отношения между физическими объектами и представляют собой способ точного описания происходящего в реальном мире.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.