Александр Ивин - Логика Страница 5
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Александр Ивин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 84
- Добавлено: 2019-01-28 18:20:38
Александр Ивин - Логика краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Александр Ивин - Логика» бесплатно полную версию:В книге доступно, ясно и вместе с тем строго и систематично излагаются основные понятия и принципы современной логики. Главное внимание уделяется логической проблематике, представляющей особый интерес с точки зрения наук о культуре. Изложение логической теории сочетается с показом логического анализа в действии, в применении к содержательно интересным проблемам. Немаловажным преимуществом является также то, что данный учебник специально рассчитан на представителей гуманитарных специальностей. Символические средства, широко используемые современной логикой, здесь сведены к минимуму. Особое внимание уделяется естественному языку и тем логическим ошибкам, которые возможны при его употреблении.Для студентов социальных и гуманитарных специальностей (философов, юристов, филологов, социологов, политологов, журналистов и др.). Для специалистов, занимающихся исследованиями в области логики, философской логики, литературоведения, языкознания, риторики, стилистики, культурологии, психологии, социологии, политологии, юриспруденции, а также отдельных богословских дисциплин (гомилетики, пастырского богословия). Книга может быть рекомендована в качестве дополнительного пособия для всех изучающих древние и новые иностранные языки.
Александр Ивин - Логика читать онлайн бесплатно
Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго; Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот. Используя данные схемы, от утверждения «Неверно, что сегодня ветер и дождь» можно перейти к утверждению «Неверно, что сегодня ветер или неверно, что сегодня дождь» и от утверждения «Амундсен или Скотт был первым на Южном полюсе» перейти к утверждению «Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе».
Таковы некоторые схемы правильного рассуждения. В дальнейшем эти и другие схемы будут рассмотрены более детально и представлены с использованием специальной логической символики.
6. Традиционная и современная логика
История логики охватывает около двух с половиной тысячелетий. «Старше» формальной логики, пожалуй, только философия и математика.
В длинной и богатой событиями истории развития логики отчётливо выделяются два основных этапа. Первый – от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй – с этого времени до наших дней.
На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных ещё Аристотелем. Это дало повод немецкому философу И.Канту (1724-1804) в своё время придти к выводу, что формальная логика является завершённой наукой, не продвинувшейся со времени Аристотеля ни на один шаг.
Кант не заметил, что ещё с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.
Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646-1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: «Будем вычислять».
Идеи Лейбница не оказали, однако, заметного влияния на его современников. Энергичное развитие логики началось позже, в XIX в.
Немецкий математик и логик Г.Фреге (1848-1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убеждён, что «арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования». Пытаясь свести математику к логике, он реконструировал последнюю. Логическая теория Фреге – провозвестник всех нынешних теорий правильного рассуждения.
Идея сведения всей чистой математики к логике была подхвачена английским логиком и философом Б.Расселом (1872-1970). Но последующее развитие логики показало неосуществимость этой грандиозной по своему замыслу попытки. Она привела, однако, к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.
В России в конце прошлого – начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по заимствованным и устаревшим образцам. И тем не менее были люди, стоявшие на уровне достижений логики своего времени и внёсшие в её развитие важный вклад. Прежде всего это доктор астрономии Казанского университета, логик и математик П.С.Порецкий. Сдержанное общее отношение к математической логике, разделявшееся многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей. Но его идеи оказали в конечном счёте существенное влияние на развитие алгебраически трактуемой логики как в нашей стране, так и за рубежом. Порецкий первым в России начал читать лекции по современной логике, о которой он говорил, что это «по предмету своему есть логика, а по методу математика». Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий логики и в наши дни.
Одним из первых (ещё в 1910 г.) сомнения в неограниченной приложимости логического закона противоречия, о котором пойдёт речь далее, высказал логик Н.А.Васильев. «Предположите, – говорил он, – мир осуществлённого противоречия, где противоречия выводились бы, разве такое познание не было бы логическим?» Васильев, подобно Ломоносову, наряду с научными статьями, писал порой и стихи. В них своеобразно преломлялись его логические идеи, в частности идея воображаемых (возможных) миров:
…Мне грезится безвестная планета,Где все идёт иначе, чем у нас.
В качестве логики воображаемого мира он предложил свою теорию без закона противоречия, долгое время считавшегося центральным принципом логики. Васильев полагал необходимым ограничить и действие закона исключённого третьего, о котором также говорится в дальнейшем. В этом смысле Васильев явился одним из идейных предшественников логики наших дней. Идеи Васильева при его жизни подвергались жёсткой критике, в результате он оставил занятия логикой. Потребовалось полвека, прежде чем его «воображаемая логика» без законов противоречия и исключённого третьего была оценена по достоинству. Идеи, касающиеся ограниченной приложимости закона исключённого третьего и близких ему способов математического доказательства, были развиты математиками А.Н.Колмогоровым, В.А.Гливенко, А.А.Марковым и др. В результате возникла так называемая конструктивная логика, считающая неправомерным перенос ряда логических принципов, применимых в рассуждениях о конечных множествах, на область бесконечных множеств.
Известный русский физик П.Эренфест первым высказал гипотезу о возможности применения современной ему логики в технике. В 1910 г. он писал:
«Символическая формулировка даёт возможность „вычислять“ следствия из таких сложных систем посылок, в которых при словесном изложении почти или совершенно невозможно разобраться. Дело в том, что в физике и технике действительно существуют такие сложные системы посылок. Пример: пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое „или-или“, воплощённое в эбоните и латуни; все вместе – система чисто качественных (сети слабого тока, поэтому не количественных) „посылок“, ничего не оставляющая желать в отношении сложности и запутанности. Следует ли при решении этих вопросов раз и навсегда удовлетвориться рутинным способом преобразования на графике? Правда ли, что, несмотря на существование уже разработанной алгебры логики, своего рода „алгебра распределительных схем“ должна считаться утопией?»
В дальнейшем гипотеза Эренфеста получила воплощение в теории релейно-контактных систем.
В общем, оглядываясь на историю распространения логики, можно сказать, что лучшие русские логики всегда стремились стоять на уровне современных им мировых теорий и концепций, органически чуждаясь всякого рода логического сектантства и сепаратизма.
Современную логику нередко называют математической, подчёркивая тем самым своеобразие новых её методов в сравнении с использовавшимися ранее в традиционной логике.
Одна из характерных черт этих методов – широкое использование разнообразных символов вместо слов и выражений обычного языка. Символы применял в ряде случаев ещё Аристотель, а затем и все последующие логики. Однако теперь в использовании символики был сделан качественно новый шаг. В логике стали использоваться специально построенные языки, содержащие только специальные символы и не включающие ни одного слова обычного разговорного языка.
Широкое использование символических средств послужило основанием того, что, новую логику стали называть символической. Названия «математическая логика» и «символическая логика», обычно употребляемые и сейчас, обозначают одно и то же – современную формальную логику. Она занимается тем же, чем всегда занималась логика – исследованием правильных способов рассуждения.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.