А Колесников - Закон Менделеева Страница 6

Тут можно читать бесплатно А Колесников - Закон Менделеева. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
А Колесников - Закон Менделеева

А Колесников - Закон Менделеева краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «А Колесников - Закон Менделеева» бесплатно полную версию:

А Колесников - Закон Менделеева читать онлайн бесплатно

А Колесников - Закон Менделеева - читать книгу онлайн бесплатно, автор А Колесников

СОВРЕМЕННАЯ ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ

В 1905 году, незадолго до смерти, Д. И. Менделеев писал: «…периодическому закону будущее грозит не разрушением, а только надстройки и развитие быть обещаются». История дальнейшего развития науки показала всю справедливость этого предвидения.

Конец XIX и начало XX века ознаменовались рядом крупных научных открытий в области физики и химии. Эти открытия заставили учёных коренным образом пересмотреть представление об атоме и в особенности об атомном весе, этом наиболее индивидуальном качестве химического элемента, на которое опирался в своей работе Д. И. Менделеев.

В 1895 году Рентгеном были открыты новые, неизвестные дотоле лучи с большой проникающей способностью [4].

В поисках других подобных лучей профессор Беккерель открыл в следующем году вещество, которое самопроизвольно, без влияния внешнего воздействия, испускает лучи, обладающие огромной проникающей способностью. Это было соединение урана. Явление самопроизвольного распада было названо радиоактивностью (излучением).

Вскоре было установлено, что радиоактивность — явление, распространённое в природе. Оно было обнаружено у элементов тория, актиния и других.

М. Складовская-Кюри, исследуя урановую руду, открыла новый элемент — радий, расположенный в современной периодической таблице элементов под номером 88. Изучение его свойств показало, что этот элемент родственен барию.

Была установлена природа радиоактивного излучения. Как оказалось, при радиоактивном распаде вещества выделяются три рода лучей: они были названы альфа-, бета- и гамма-лучами (альфа, бета и гамма — первые буквы греческого алфавита).

Альфа- и бета-лучи отклоняются в магнитном поле и, следовательно, являются электрически заряженными (рис. 4).

Гамма-лучи магнитным полем не отклоняются; по природе они родственны лучам Рентгена.

Рис. 4. Излучение радия под действием магнитного поля.

Дальнейшее исследование радиоактивных лучей выявило, что альфа-лучи представляют собой поток положительно заряженных частиц, масса которых равна массе атома гелия. Бета-лучи несут на себе отрицательные электрические заряды. Таким образом, открытие радиоактивных веществ показало, что атом не является простейшей неделимой частичкой.

И действительно, вскоре было установлено, что атом состоит из положительно заряженного ядра, вокруг которого на определённых расстояниях вращаются отрицательно заряженные частицы — электроны. Электроны образуют так называемые электронные оболочки атома. Заряд ядра атома уравновешивается суммой зарядов находящихся в нём электронов.

Хотя ядро атома занимает ничтожно малую часть объёма атома, в нём сосредоточена почти вся его масса.

Самый простейший атом — атом водорода. Он имеет ядро, несущее на себе один положительный заряд, и один электрон, который вращается вокруг ядра.

Электроны располагаются в атомах как бы по слоям, распределены в них на определённых уровнях, причём в каждом слое может находиться только определённое число электронов. Например, первый слой «вмещает» всего два электрона, второй — восемь и т. д.

Атомы, как уже говорилось, в целом электронейтральны. Однако при известных условиях они способны терять из внешней оболочки свои электроны или, наоборот, захватывать на свою внешнюю оболочку «чужие» электроны. В этом случае атом становится электрически заряженной частичкой — ионом.

Притягиваясь друг к другу, различно заряженные ионы — положительные и отрицательные — и образуют молекулы сложных веществ.

Металлы относятся к элементам, которые легко отдают свои электроны. Наоборот, неметаллы — металлоиды — стремятся «захватить» во внешнюю оболочку «лишние» электроны.

Некоторые элементы имеют свойства как металлов, так и неметаллов. Их называют амфотерными.

Способность отдельных атомов отдавать определённое число электронов или присоединять их и определяет валентность химических элементов.

Исследования строения атома показали связь между химическими свойствами элементов и строением электронных оболочек атома.

Возьмём для примера химический элемент литий (Li), начинающий второй период. В его электронной оболочке имеется три электрона. Два из них располагаются в первом слое, а третий образует новый слой, удалённый от ядра на большее расстояние. Этот последний электрон менее устойчив в системе; атом может легко его отдать, превращаясь при этом в положительно заряженную частицу — положительный ион.

Благодаря этому литий и принадлежит к химически активным элементам.

У каждого следующего за литием элемента — вплоть до неона — во внешнем электронном слое прибавляется по одному электрону. Неон завершает собой второй период таблицы Менделеева; в его внешнем электронном слое все восемь мест оказываются занятыми. У неона очень трудно «изъять» любой из восьми электронов его наружного электронного слоя.

Именно поэтому неон и является инертным газом: только с большим трудом он вступает в химические соединения с другими элементами.

Новый — третий — период в системе Менделеева начинает элемент натрий. У этого элемента 11 электронов, из них 10 находятся в ближних к ядру двух электронных слоях, полностью завершённых, а последний, одиннадцатый, начинает собой «застройку» нового, третьего, внешнего электронного слоя. Этот одиннадцатый электрон ещё легче, чем у лития, может быть оторван от атома, так как он находится ещё дальше от ядра. Поэтому натрий, как и литий, характеризуется высокой химической активностью.

Третий период заканчивает аргон; он, как и неон, входит в группу инертных газов Его внешний электронный слой заполнен уже целиком, включая в себя также восемь электронов, и он поэтому «безразличен» к другим химическим элементам.

Таким образом, завершённой электронной группировкой (слоем) в атоме заканчивается каждый период химических элементов в таблице Менделеева. Первому периоду соответствует слой, состоящий из двух электронов, второму и третьему — слой из восьми электронов. Далее следуют четвёртый и пятый периоды (см. таблицу Менделеева), объединяющие в электронных слоях по 18 электронов.

Шестой период, состоящий из 32 элементов, содержит электронный слой, имеющий 32 электрона.

У инертных элементов этих периодов внешняя электронная оболочка состоит из такой же устойчивой, «завершённой» группировки электронов, какую имеют неон и аргон.

Седьмой период — незаконченный, он не имеет завершённой электронной оболочки.

Если мы проследим, как в связи со строением электронных оболочек атомов изменяются химические свойства элементов, то мы увидим, что с увеличением числа электронов во внешней оболочке атомов каждого периода постепенно уменьшается способность атомов терять свои «внешние» электроны.

Одновременно с этим начинает проявляться другая способность атомов — легко «достраивать» свою внешнюю электронную оболочку до наиболее устойчивой структуры, то есть до восьми электронов. Эта способность наибольшая у электронов седьмой группы — у фтора, хлора и других. Поэтому атомы этих элементов легко образуют отрицательно заряженные ионы.

Как вы уже знаете, каждая группа элементов в периодической таблице объединяет в себе элементы, родственные по химическим свойствам. Решающую роль в этом играет структура внешней электронной оболочки.

Зная, в какую группу входит тот или иной элемент, можно заранее предугадать его химические свойства и родство с другими элементами.

Элементы средних групп, в особенности четвёртой (например, углерод, кремний, олово, свинец), как мы уже теперь легко можем сами подсчитать, содержат на внешней оболочке четыре электрона. Элементы этих групп имеют или очень слабо выраженные свойства металлов, или свойства металлоидов (например, углерод, кремний), или свойства металлов и металлоидов одновременно. К последним относятся, например, олово и свинец. Эти элементы обладают одинаковой способностью образовывать как положительно, так и отрицательно заряженные ионы.

Изучение электронного строения атомов показало также, что место химического элемента в таблице Д. И. Менделеева определяется не атомным весом элемента, а величиной заряда его ядра. Положительный заряд ядер различных химических элементов различен: заряд ядра водорода, как говорилось, равен единице, заряд ядра гелия равен двум, лития — трём единицам и т. д. Иными словами, заряд ядра у различных атомов численно совпадает с порядковыми номерами химических элементов в таблице Менделеева. Так, заряд ядра лития равен трём единицам и его порядковый номер в таблице — три, заряд ядра натрия 11, таков же и его порядковый номер в таблице и т. д.

Таким образом, в настоящее время периодический закон Д. И. Менделеева формулируется следующим образом: свойства химических элементов находятся в периодической зависимости от их порядковых номеров.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.