Кентерберийские головоломки - Дьюдени Генри Эрнест Страница 6
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Дьюдени Генри Эрнест
- Страниц: 15
- Добавлено: 2020-09-17 03:42:10
Кентерберийские головоломки - Дьюдени Генри Эрнест краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Кентерберийские головоломки - Дьюдени Генри Эрнест» бесплатно полную версию:Кентерберийские головоломки - Дьюдени Генри Эрнест читать онлайн бесплатно
– Заметьте себе, добрые сэры, как я пущу эти стрелы – каждую в середину одной из клеток этой доски, причем ни одна из стрел не окажется на одной линии ни с какой другой стрелой.
На приведенном здесь рисунке показано, как он это сделал: действительно, ни одна из стрел не находится на одной вертикали, горизонтали или диагонали ни с какой другой стрелой. Тут Йомен добавил:
– А вот вам и головоломка. Передвиньте три стрелы, каждую на одну из соседних клеток, так, чтобы при этом все девять стрел расположились вновь таким образом, чтобы ни одна не лежала на одной прямой ни с какой другой стрелой.
Под «соседней» имеется в виду любая клетка, расположенная рядом с данной по вертикали, горизонтали или диагонали.
11. Головоломка Монахини. – Уверена, что среди вас нет ни одного, – сказала Монахиня при одной из следующих оказий, – кто не знал бы, что многие монахи часто проводят время в играх, которые не очень-то приличествуют их сану. Карты или шахматы они искусно прячут от глаз аббата на полках своих келий в толстых фолиантах, в которых внутри вырезают для этого углубления. Стоит ли после этого сурово порицать монахинь за то, что они поступают так же? Я покажу маленькую игру-головоломку, в которую мы иногда играем между собой, когда наша добрая аббатиса отлучается из монастыря.
С этими словами Монахиня достала восемнадцать карт, показанных на рисунке.
Она объяснила, что головоломка состоит в том, чтобы сложить из этих карт колоду, причем, если затем выложить верхнюю карту на стол, следующую – в низ колоды, следующую – опять на стол, следующую – снова в низ колоды, пока все карты не окажутся на столе, то в результате должны получиться слова CANTERBURY PYLGRIMS.[7] Разумеется, каждую следующую карту нужно выкладывать на стол непосредственно справа от предыдущей. Это достаточно легко выполнить, если двигаться в обратную сторону, однако читатель должен попытаться получить ответ, не проделывая такой обратной операции и не пользуясь настоящими картами.
12. Головоломка Купца. Купец, который был среди паломников, отличался тем, что «курс экю высчитывать умел и знатно на размене наживался» и «… так искусно вел свои расчеты, Что пользовался ото всех почетом». Однажды утром, когда вся компания двигалась по дороге, Рыцарь и Сквайр, ехавшие рядом с Купцом, напомнили ему, что он все еще не порадовал компанию своей головоломкой.
– В самом деле? – оживился купец. – Тогда вот вам числовая головоломка, которую я предложу всей честной компании, когда мы остановимся отдохнуть «Сегодня утром нас движется по дороге тридцать человек. Мы можем двигаться один за другим, что называется гуськом, или пара за парой, или тройка за тройкой, или пятерка за пятеркой, или шестерка за шестеркой, или десятка за десяткой, или, наконец, все тридцать в ряд. Ехать каким-либо иным способом, так, чтобы в каждом ряду всадников было поровну, мы не можем. А вот некая компания паломников способна ехать шестьюдесятью четырьмя способами. Скажите мне, сколько в этой компании должно быть паломников.
Купец, очевидно, имел в виду наименьшее число всадников, которые могут ехать шестьюдесятью четырьмя способами.
13. Головоломка Юриста. «Был с ними важный, чопорный Юрист. Он, как искусный, тонкий казуист, На паперти был очень уважаем И часто на объезды назначаем». Вообще он был человеком весьма занятым, но, как и многие в наши дни, «работник ревностный, пред светом целым, Не столько был им, сколько слыть умел им». Однажды вечером, говоря о темницах и узниках, он заметил по ходу дела:
– То, о чем я говорил, напомнило мне о головоломке, которую я придумал сегодня утром, чтобы предложить вашему вниманию.
С этими словами Юрист вынул кусок пергамента, на котором был изображен странный план, приведенный на рисунке.
– Вот здесь, – сказал он, – изображены девять темниц. В каждой из них, кроме одной, находится по узнику. Эти узники перенумерованы в порядке 7, 5, 6, 8, 2, 1, 4, 3. Я хотел бы знать, как их можно расположить в порядке 1, 2, 3, 4, 5, 6, 7, 8 за наименьшее число перемещений. Одного узника за один раз можно перевести по переходу в пустующую темницу, но под страхом смерти запрещается двум узникам находиться одновременно в одной темнице. Как же решить задачу?
Если читатель набросает примерный план на листе бумаги и воспользуется перенумерованными фишками, то он сможет с интересом провести время, стараясь переместить узников за наименьшее число ходов. Поскольку на каждом ходе свободной оказывается только одна темница, последовательность перемещений можно записать весьма простым способом: 3–2 – 1–6 и т. д.
14. Головоломка Ткача. Когда Ткач развернул квадратный кусок ткани с искусно вышитыми львами и замками, паломники стали обсуждать между собой, что мог бы означать этот орнамент. Однако Рыцарь, будучи искушен в геральдике, пояснил, что скорее всего он происходит от львов и замков, украшавших доспехи Фердинанда III, короля Кастилии и Леона, дочь которого была первой женой английского короля Эдуарда I. В этом он был несомненно прав. Головоломка же, предложенная Ткачом, была такова:
– Давайте посмотрим, ради всего святого, – сказал он, – найдется ли кто-нибудь в этой компании, кто может показать, как следует разрезать кусок ткани на четыре части одинакового размера и формы, чтобы при этом на каждой части оказалось ровно по одному льву и замку.
Записи не говорят, удалось ли кому-нибудь решить эту головоломку, хотя ее вполне можно решить удовлетворительным образом. Никакой разрез не должен пересекать льва или замок.
15. Головоломка Повара. В компании паломников был и Повар. Его искусство, несомненно, пользовалось огромным признанием, ибо «Умел варить, тушить он, жарить, печь; Умел огонь как следует разжечь; Похлебку он на славу заправлял; Эль лондонский тотчас же узнавал». Однажды вечером, когда паломники в деревенской харчевне собирались приступить к трапезе, Повар встал у стола, возглавляемого Франклином,[8] и сказал:
– Послушайте меня, господа мои, я задам вам одну головоломку. Клянусь святым Моденом, она из тех задач, на которые я сам не могу ответить. Одиннадцать паломников сидят за этим столом, на котором стоят пирог и блюдо с паштетом из оленьей печенки. И паштет, и пирог можно разделить на четыре части, но не больше. Теперь, заметьте, пятеро из нас любят пирог, но не прикоснутся к паштету, тогда как четверо обожают паштет, но воротят нос от пирога. Двое же оставшихся желают отведать оба блюда. Во имя всего святого, найдется ли кто-нибудь среди вас, кто смог бы мне сказать, сколькими способами этот достойный Франклин может выбрать тех, кого он захочет угостить?
Я должен сразу же предупредить читателя: если он будет невнимателен, то, заглянув в ответ, обнаружит, что ошибся на 40, как это и произошло со всей компанией. Только Оксфордский студент дал правильный ответ, да и то случайно – он попросту описался.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.