Уолтер Левин - Глазами физика. От края радуги к границе времени Страница 8
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Уолтер Левин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 76
- Добавлено: 2019-01-28 16:16:26
Уолтер Левин - Глазами физика. От края радуги к границе времени краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Уолтер Левин - Глазами физика. От края радуги к границе времени» бесплатно полную версию:В книге не менее яркой, чем его знаменитые лекции, профессор Левин рассказывает о самых необычных и интересных гранях физики, о чудесах, которые творятся каждый день вокруг нас, – например, о том, почему ударяет молния. О чем бы ни решил рассказать автор, ему всегда удается совместить обучение с развлечением.Книга предназначена для студентов и преподавателей, а также для всех, кто хочет изучать физику с удовольствием и интересом.На русском языке публикуется впервые.
Уолтер Левин - Глазами физика. От края радуги к границе времени читать онлайн бесплатно
Физика уже объяснила нам очень многое: красоту и хрупкость радуг, существование черных дыр, особенности движения планет, последствия взрыва звезд, причину увеличения скорости вращения фигуристки при опускании рук, причину невесомости астронавтов в космосе, формирование химических элементов во Вселенной, время рождения Вселенной, а также ответила на вопросы о том, как флейта создает музыку, как генерируется электричество, которое движет нашими телами и экономикой, каким был звук Большого взрыва. Физика позволила нам заглянуть и в наименьшие зоны субатомного мира, и в самые дальние уголки Вселенной.
Мой друг и коллега Виктор Вайскопф, который к моему прибытию в МТИ уже по праву считался его старейшиной, написал книгу под замечательным названием The Privilege of Being a Physicist («Привилегия быть физиком»), весьма точно отражающим чувства, испытанные мной в тот момент, когда я оказался в центре одного из самых захватывающих периодов астрономических и астрофизических открытий с тех времен, как земляне впервые начали пристально всматриваться в ночное небо. Люди, с которыми я работал бок о бок в МТИ, изобретали потрясающе творческие и сложные методы, позволяющие им отвечать на самые фундаментальные научные вопросы. И это была моя безусловная привилегия – помогать расширять коллективные знания человечества о звездах и Вселенной и при этом вносить посильный вклад в то, чтобы несколько поколений молодых людей поняли и полюбили эту великолепную область науки.
С того дня, как изотопы впервые распались буквально в моих руках, я не перестаю восторгаться открытиями в физике, и старыми, и новыми; ее богатой историей и постоянно расширяющимися границами; тем, как она раз за разом открывает мне глаза на неожиданные чудеса окружающего мира. Для меня физика – эффективный способ увидеть мир, великое и будничное, огромное и сиюминутное и то, как красиво и тесно все в нем переплетено.
Именно в таком ключе я и стараюсь представить физику своим ученикам. По-моему, гораздо важнее помнить о красоте открытий, чем сосредоточиваться на сложных расчетах и формулах – в конце концов, большинство из них не собираются становиться физиками. Я делал и делаю все возможное, чтобы помочь им взглянуть на мир по-другому; начать задавать вопросы, которые они никогда и не думали задавать; увидеть радугу так, как они никогда не видели ее раньше; сфокусироваться на изысканной красоте физики, а не на скучных математических деталях. Цель этой книги – открыть вам глаза на замечательные способы, которыми физика открывает мир, показать ее удивительную элегантность и красоту.
2. Измерения, погрешности и звезды
Моя бабушка и Галилео Галилей
Физика по своей сути экспериментальная наука, и измерения и их погрешности лежат в основе каждого исследования и открытия. Даже величайшие теоретические прорывы в физике обычно имеют форму прогнозов относительно величин, которые поддаются измерению. Возьмем, например, второй закон Ньютона F = ma (сила равна массе, умноженной на ускорение), пожалуй, самое важное уравнение в физике; или, скажем, знаменитое Эйнштейновское E = mc² (энергия равна массе, умноженной на квадрат скорости света), самое известное уравнение в физике. А как еще физикам выражать взаимосвязи, если не через математические уравнения с участием разных измеримых величин, таких как плотность, вес, длина, заряд, гравитационное притяжение, температура или скорость?
Я признаю, что в данном случае могу быть несколько предвзятым, ведь мои исследования при написании докторской диссертации в основном сводились к различного типа высокоточным измерениям частиц ядерного распада, а мой вклад в развитие рентгеновской астрономии базировался на измерениях жесткого рентгеновского излучения из источников, расположенных в десятках тысяч световых лет от Земли. Однако я со всей ответственностью утверждаю: физика без измерений попросту бессмысленна. И что не менее важно, любые значимые измерения без учета их погрешности бессмысленны тоже.
Должен сказать, что мы постоянно живем с некоторой оглядкой на погрешность в разумных пределах. Когда банк сообщает вам, сколько денег на вашем счету, вы ожидаете погрешности не больше полкопейки. Приобретая одежду онлайн, покупатель рассчитывает, что ее размер будет отличаться от нужного весьма незначительно. Если пара штанов 34-го размера окажется меньше или больше всего на 3 процента, их размер в области талии изменится более чем на два сантиметра; в результате вы получите либо штаны 35-го размера, висящие у вас на бедрах, либо 33-го, что заставит вас недоумевать, как это вы умудрились так быстро и основательно поправиться.
Не менее важно, чтобы измерения выражались в правильных единицах. Возьмем, к примеру, неудачную одиннадцатилетнюю миссию НАСА Mars Climate Orbiter по исследованию марсианского климата, которая обошлась в 125 миллионов долларов и закончилась катастрофой из-за банальной путаницы в единицах измерений. Одна команда инженеров использовала метрические единицы, а другая английские, в итоге в сентябре 1999 года космический аппарат вместо того, чтобы выйти на стабильную орбиту, вошел в атмосферу Марса.
Мое безоговорочное признание решающей роли измерений в физике послужило одной из причин скептического отношения к теориям, которые нельзя проверить с помощью измерений. Возьмем теорию струн или ее, так сказать, усовершенствованную версию, теорию суперструн, то есть последнюю на сегодняшний день попытку теоретиков предложить «теорию всего». Физикам-теоретикам – а теорию струн выдвинули поистине блестящие ученые – еще предстоит разработать хотя бы один эксперимент, один прогноз, позволяющий проверить любое из положений теории струн. Увы, по крайней мере на текущий момент ничто в данной теории не может быть подтверждено либо опровергнуто экспериментально. Это означает, что пока что она не имеет предсказательной силы, в связи с чем некоторые физики, в том числе Шелдон Глэшоу из Гарварда, сомневаются, стоит ли вообще считать ее физической теорией.
Однако у теории струн немало поистине блестящих и весьма красноречивых сторонников. Один из них – Брайан Грин; его книга и одноименная программа PBS[8] The Elegant Universe («Элегантная Вселенная») (в них, кстати, входит краткое интервью с вашим покорным слугой) очаровательны и красивы. М-теория Эдварда Уиттена, объединившая пять различных теорий струн и настаивающая на наличии одиннадцати измерений пространства, из которых мы, существа низшего порядка, видим только три, также довольно непривычна и наталкивает на серьезные размышления.
Когда какая-то теория не подтверждается фактами, я вспоминаю свою бабушку, мамину маму, поистине великую женщину, которая имела в запасе множество замечательных поговорок и привычек, делавших ее, по сути, на редкость интуитивным ученым. Например, она часто говорила, что стоящий человек короче, чем лежащий. Я обожаю рассказывать об этом своим студентам. В первый же день занятий я объявляю им, что в память о своей бабушке намерен сейчас же проверить эту диковинную идею. Они, конечно же, полностью сбиты с толку. Я буквально читаю их мысли: «Стоя короче, чем лежа? Но это невозможно!»
Их недоверие вполне понятно. Конечно, даже если какая-то разница и существует, то она, несомненно, ничтожно мала. В конце концов, если бы она составляла, скажем, пару десятков сантиметров, мы бы это точно знали, не так ли? Просыпаетесь вы утром, встаете с постели и – бац – становитесь заметно ниже, на целых двадцать сантиметров. Но если разница составляет всего один миллиметр, вы ее, скорее всего, не заметите. Вот почему я исхожу из того, что если бабушка права, то разница, вероятно, не больше пары сантиметров.
Для проведения эксперимента мне в первую очередь необходимо убедить аудиторию в точности моих измерений. Поэтому я начинаю с измерения вертикально установленного алюминиевого стержня – его длина составляет 150,0 сантиметров – и прошу слушателей подтвердить, что я определенно способен измерить его с точностью до миллиметра. Итак, длина стержня в вертикальном положении 150,0 ± 0,1 см. Затем я измеряю его в горизонтальном положении и получаю 149,9 ± 0,1 см, что вполне согласуется – с учетом погрешности измерений – с результатом замера в вертикальном положении.
Чего же я добиваюсь, проделывая эти манипуляции? Многого! Во-первых, два измерения наглядно демонстрируют, что я в состоянии измерить длину объекта с точностью до 1 миллиметра. Не менее важно и то, что этим я хочу студентам доказать, что не мошенничаю и не пытаюсь их обмануть. Предположим, что я бы заранее приготовил специальную рулетку для горизонтальных замеров – это был бы очень нечестный, непорядочный поступок. Наглядно продемонстрировав аудитории, что длина алюминиевого стержня практически одинакова при обоих замерах, я тем самым подтверждаю свою репутацию и научную честность.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.