Сергей Вавилов - Глаз и Солнце Страница 9

Тут можно читать бесплатно Сергей Вавилов - Глаз и Солнце. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Сергей Вавилов - Глаз и Солнце

Сергей Вавилов - Глаз и Солнце краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Сергей Вавилов - Глаз и Солнце» бесплатно полную версию:
Книга «Глаз и Солнце», созданная выдающимся ученым, академиком С. И. Вавиловым (1891–1951), стала классикой научно-популярной литературы. В ней представлена история изучения света, рассказано об устройстве человеческого глаза и свойствах излучения Солнца. Дополняют книгу тексты знаменитого физика Г. Г. Слюсарева, а также суждения мыслителей прошлого – Р. Декарта, Х. Гюйгенса, И. Ньютона, Дж. Беркли, О. Ж. Френеля и И. В. Гёте.

Сергей Вавилов - Глаз и Солнце читать онлайн бесплатно

Сергей Вавилов - Глаз и Солнце - читать книгу онлайн бесплатно, автор Сергей Вавилов

Изучая любые действия света, не только химические, физики пришли к общему выводу: все действия света происходят так, как будто бы частицы вещества могли поглощать свет и излучать его только целыми квантами. Квант света был назван также фотоном.

Если освещение происходит однородным простым светом с частотой ν раз в секунду, то величина кванта равна , где h – всегда постоянная, очень малая величина (6,62. 10–27, т. е. 6,62, деленное на единицу с 27 нулями). С этой точки зрения постоянное выцветание ткани становится вполне понятным. Энергия светового потока не распределена повсюду равномерно и непрерывно, она сосредоточена в некоторых центрах – квантах. Разлагаются только те молекулы вещества, которые встретили летящие кванты света. В некоторых случаях можно рассуждать так. Если за определенное время веществом поглощена энергия Е, то количество разложившихся молекул получится делением этой энергии на энергию кванта.

В простых случаях химического разложения под действием света это заключение хорошо подтверждается опытом. Прерывный, квантовый характер действия света проявляется всюду: при нагревании вещества, при электрических действиях света, при флуоресценции и т. д. Особенно замечательно, что при очень слабых световых потоках человеческий глаз также замечает прерывность световой энергии. К этому мы вернемся в последней главе книги.

Для лучей радио частота ν относительно очень мала, поэтому квант ничтожно мал; в этом случае крайне трудно уловить прерывный характер действий. Наоборот, для лучей Рентгена, имеющих очень большую частоту, квант велик, и здесь квантовые действия света особенно резки и отчетливы.

К нашему списку основных свойств света прибавилось, таким образом, новое важнейшее свойство, трудно совместимое с другими, ставшими ранее известными световыми признаками. Еще не исчерпав изложения всех известных до настоящего времени основных свойств света, перейдем, однако, к попыткам объяснения физической сущности света. Это несколько облегчает понимание и запоминание явлений.

Издавна рождались и умирали различные догадки о природе света. Многие из них были совершенно беспочвенными, так как судили, в сущности, неизвестно о чем: о явлении, свойства которого были скрыты; смешивали зрение со светом; в результате возникали странные теории о зрительных лучах, о которых была речь во введении. Были, впрочем, и догадки, довольно близкие к теперешним теоретическим взглядам.

Свет несет от Солнца к Земле через огромные пространства энергию. Знали или, вернее, чувствовали это и древние.

Как можно передать энергию на расстояние? Способов не так много. Самое простое – перебросить энергию вместе с веществом с одного места на другое. Выстрел – это перенос разрушительной энергии пороха от стрелка к цели, энергия переносится летящей пулей. Можно переносить энергию с веществом непрерывным потоком, лавиной, но это, в сущности, одно и то же. И тут и там вещество странствует вместе с энергией. Но есть и другой способ. Морская волна, поднятая ветром, несется вдаль и наконец, обрушиваясь, отдает свою энергию. Но если присмотреться к волнам, то легко заметить, что волна несется, а вода ею не увлекается, она только колышется на одном месте вверх и вниз. Энергия передается от слоя к слою без передвижения вещества. Точно так же распространяется энергия звука в воздухе. Звуковая волна – это не ветер, а последовательное колебание слоев воздуха. «Если бы от струн, – рассуждает Ломоносов в своем „Слове о происхождении света“, – так скоро двигался проходным течением воздух, как голос, т. е. больше 1000 футов в секунду, то бы от такой музыки и горы с мест своих сдвинуты были». Для передачи энергии на расстояние волнами нужна промежуточная среда, в наших примерах – вода и воздух; в безвоздушном пространстве звук не распространяется. Иных способов передачи энергии мы не знаем. Значит, свет, несущий энергию от Солнца к Земле, должен быть либо потоком частиц, либо системой волн в некоторой среде, либо тем и другим сразу. Эти воззрения существовали в разных формах и у древних. Неизбежно воскресли они и в новой физике при попытках связать все разнообразные свойства единым образом.

Рис. 6

Прохождение лучей в опыте Ньютона с интерференционными кольцами

Ньютон стремился не смешивать домыслов с достоверностями, предположений с фактами, но в особо выделенных местах своих сочинений он много раз возвращался к вопросу о природе света, склоняясь к теории истечения. Главным его доводом против теории волн было отсутствие вещественной среды – «эфира» в мировом пространстве. В самом деле, планеты движутся совершенно регулярно, не встречая никакого заметного сопротивления или трения в окружающем их пространстве; следовательно, между планетами и Солнцем нет оснований предполагать наличие вещественной среды, которая необходима для распространения волн. Как в сосуде, из которого выкачан воздух, звук перестает существовать, так и механические колебания светил не могут превратиться в волны «пустого» мирового пространства. По Ньютону, более вероятно предположение, что свет – это поток мельчайших частиц вещества.

Периодичность, по Ньютону, можно объяснить, например, тем, что частицы вращаются. Пространство, пробегаемое такой частицей – корпускулой – за время ее одного оборота, и будет «длиной волны». Поляризацию Ньютон считал свойством только твердых частиц, видя в наличии ее у света доказательство того, что свет состоит из твердых корпускул. Огибание, дифракцию, Ньютон пытался истолковать отталкивательным и притягательным действиями вещества на свет.

Но в собственном экспериментальном наследстве Ньютона скрывалось тяжкое затруднение для его механической теории световых частиц. Вернемся к опыту с ньютоновыми кольцами. Не приходится сомневаться в том, что эти кольца возникают в результате взаимодействия, встречи (интерференции) двух лучей, отразившихся от верхней и нижней границ, ограничивающих зазор между линзой и стеклом. Рассмотрим два таких луча (рис. 6).

Луч 1 отражается от первой границы, создавая отраженный луч 1; луч 2, преломляясь на первой поверхности, отражается от второй и попадает снова в линзу. Такие встречающиеся, «интерферирующие», лучи и дают при своем взаимодействии постоянную картину ньютоновых колец. Представим себе теперь, по Ньютону, что лучи 1 и 2 – это пути световых частиц, беспорядочно вылетающих из источника света. Обе частицы совершенно независимы друг от друга. Если мы применим очень слабое освещение, то должны достигнуть наконец такого состояния, что вероятность одновременного прохождения частиц по пути 1 и 2 станет ничтожной. Если прав Ньютон, то в таком случае кольца должны исчезнуть: частицам не с чем взаимодействовать, интерферировать. Между тем опыт с кольцами удается с тем же результатом при сколь угодно малых интенсивностях. Можно, например, выбрать такое слабое освещение, что для фотографирования колец Ньютона потребуется несколько дней, и тем не менее кольца получаются такими же отчетливыми, как и при ярком освещении.

Сто пятьдесят лет должны были пройти, прежде чем было показано, что опыты с кольцами и аналогичные интерференционные явления без всяких затруднений объясняются, если только допустить, что свет есть волновое движение. В самом деле, волна распространяется от светящейся точки во все стороны и при любой интенсивности на всех своих участках несет какую-то энергию, следовательно, лучи 1 и 2 всегда могут интерферировать. Кроме того, теория волн предсказывает вполне точно и результат интерференции: если разность хода двух лучей 1 и 2 при встрече такова, что впадина одной волны как раз приходится на гребень другой, то в этом месте волны как бы гасят одна другую, получается темное кольцо; наоборот, в соседнем участке, где сходятся гребни обеих волн, получается взаимное усиление, т. е. светлое кольцо.

Рис. 7

Колебания в неполяризованном и поляризованном свете

С таким же успехом новая теория световых волн объяснила все тонкости дифракции, предсказывая факты, всегда безупречно оправдывавшиеся на опыте. Поляризация света в теории волн также получила ясное толкование. Явление поляризации показывает, что световые волны поперечны, т. е. колебания совершаются отвесно к направлению луча, точно так же как в водяных волнах на поверхности пруда. В неполяризованных лучах колебания происходят в любых направлениях вокруг луча (рис. 7), в поляризованных – только в одном направлении.

Волновая теория в первой половине XIX века победила теорию истечения Ньютона безукоризненной качественной и количественной точностью своих предсказаний. Но насколько прочна была эта победа? Вспомним, что для Ньютона главным доводом против теории волн было отсутствие механической среды – эфира – в межпланетном пространстве. Устранили ли этот довод Юнг и Френель? Нет, для них именно волновые свойства света казались доказательством бытия эфира. В течение всего XIX века физики тщетно стремились найти прямые доказательства существования эфира. В особенности роковыми для эфира оказались опыты с распространением света в движущихся телах. Если существует неподвижная механическая среда, в которой распространяются световые волны, то, например, годичное движение Земли вокруг Солнца должно сопровождаться своего рода «эфирным ветром», влияющим на оптические явления. На опыте такого «ветра» не оказалось. Следовательно, либо эфира нет, либо он обладает совершенно особыми, не механическими свойствами.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.