Анатолий Дружинин - Цилиндропоршневая группа двигателей и компрессоров. 100% инновационных элементов ЦПГ Страница 9
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Анатолий Дружинин
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: -
- Страниц: 10
- Добавлено: 2019-01-29 10:25:43
Анатолий Дружинин - Цилиндропоршневая группа двигателей и компрессоров. 100% инновационных элементов ЦПГ краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Анатолий Дружинин - Цилиндропоршневая группа двигателей и компрессоров. 100% инновационных элементов ЦПГ» бесплатно полную версию:В книге представлены теория и практика инновационных элементов цилиндропоршневой группы двигателей внутреннего сгорания. Все это сказалось на увеличении мощности и ресурса двигателя или компрессора, уменьшении расхода топлива, улучшении технико-экономических и экологических показателей.
Анатолий Дружинин - Цилиндропоршневая группа двигателей и компрессоров. 100% инновационных элементов ЦПГ читать онлайн бесплатно
Проведенные исследования показали, что рассмотрение в поршневом уплотнении только одного поршневого кольца, его конструкции и физико-механических характеристик материала, из которого оно изготавливается не вполне корректно. Дело в том, что, находясь под воздействием высоких давлений и температур рабочих газов, прорывающихся в поршневую канавку, компрессионное кольцо может потерять свою работоспособность, если его геометрические параметры рассчитаны без учета газодинамики.
«Современные рабочие кольца, как правило, имеют высоту кольца меньше, чем его толщину (толщина – это разница внешнего и внутреннего диаметров кольца) в 1,5…2,0 раза, поэтому площадь верхнего торца компрессионного кольца больше его внутренней вертикальной поверхности.
Следовательно, сила, действующая на верхний торец кольца по оси поршня, больше радиальной силы, прижимающей кольцо к стенке цилиндра. Причем разница этих сил в десятки и сотни раз превышающая силу собственной упругости кольца, блокирует радиальную силу и силу собственной упругости кольца, лишая кольцо упругости и подвижности относительно поршня. Компрессионное кольцо теряет свои функции, становится неработоспособным, уподобляясь конструктивному элементу поршня на самых ответственных тактах рабочего цикла двигателя» [6].
Изобретение свидетельствует о систематической принципиальной ошибке при проектировании компрессионных колец, приводящей к наличию брака в конструкции уплотнения между поршнем и цилиндром, выпускаемых и в большом количестве эксплуатируемых двигателей внутреннего сгорания и поршневых компрессоров. Вполне очевидно, что «неработающее» компрессионное кольцо влияет не только на величину КПД и надежность двигателя и компрессора, но и на все остальные его технико-экономические и экологические характеристики.
Кроме того, располагая компрессионные кольца по различным поршневым канавкам, учитывая наличие гарантированных зазоров между полками поршневой канавки и торцами компрессионного кольца, дном поршневой канавки и поверхностью внутреннего диаметра кольца, а также зазора в замке кольца, априори закладываются значительные прорывы сжимаемого воздуха и рабочих газов. Компенсировать эти издержки разработчики вынуждены увеличением частоты вращения коленчатого вала, введения различных типов наддувов, усложняющих конструкцию двигателя, снижающих его ресурс и повышающих расходы на его эксплуатацию. Причем, от этих мероприятий, кроме значимости, двигатель лучше не становится.
Любая деталь характеризуется геометрической формой, геометрическими параметрами и физико-механическими свойствами материала, из которого она изготавливается. В настоящее время используются всего две геометрические формы компрессионных колец: прямоугольная и трапециевидная. Как уже было представлено выше, обе эти формы применяются на полном «законном» основании, так как, в свое время, на них были разработаны соответствующие ГОСТы, которые современные разработчики «корректируют» по своему усмотрению. Выбирая ту или иную геометрическую форму компрессионного кольца, разработчик должен найти серьезные обоснования установленной конструкции, так как различия в форме кольца накладывают определенные условия на работу поршневого уплотнения и двигателя в целом.
Наиболее распространенной является классическая, прямоугольная форма кольца, самая простая и дешевая в изготовлении и эксплуатации, применяется на всех видах двигателей внутреннего сгорания, а также поршневых компрессоров и поршневых насосов. Компрессионные кольца прямоугольной формы характеризуются тремя основными геометрическими параметрами: наружным диаметром, внутренним диаметром и высотой кольца. Кроме того, на рабочем чертеже указывается очень важный размер зазора в замке, различные фаски и галтели, а также необходимые технические условия, которые должны выполняться в технологическом процессе изготовления кольца и в процессе его испытания.
Если к форме прямоугольных компрессионных колец, как показывает практика, пока особых претензий не имеется, то к компрессионным кольцам трапециевидной формы, несмотря на многолетнюю практику их эксплуатации, есть серьезные вопросы.
В учебной литературе по этому поводу есть следующее замечание: «С повышением уровня форсирования хорошо зарекомендовали себя трапециевидные кольца, которые менее склонны к закоксовыванию по сравнению с прямоугольными кольцами» [3]. Достаточно спорный вывод. Если «меньшая склонность» к закоксовыванию не совсем очевидный тезис, то сама форма кольца, в том виде, как она представлена в ГОСТе, уже вызывает большие сомнения в целесообразности ее использования. Многолетняя практика применения таких колец была бы хорошим аргументом в их пользу, если бы основные характеристики двигателя, его КПД и ресурс стали бы от этого лучше. Но, к сожалению КПД двигателя недопустимо низкий, а к экологии его еще больше претензий.
Поэтому, прежде чем вводить, в свое время, в практику двигателестроения трапециевидные поршневые кольца, надо было более внимательно ознакомиться с положительными и отрицательными последствиями принимаемого архиважного решения, принципиально влияющего на работу поршневых колец, и о которых предупреждал инициатор предлагаемых «новаций» [8]. Очевидно, пришло время разобраться в самой сути этой проблемы.
В первоисточнике термины «трапециевидные поршневые кольца» (ГОСТ Р 53843—2010) или, как было изначально «трапецеидальные поршневые кольца» (ГОСТ 621—87) имели более доходчивое название: «Клинообразные кольца (кольца с конусными торцовыми поверхностями)» [8, стр. 444]. Причем выдано это под заманчивым для разработчиков предлогом: «Кольца с пониженной склонностью к пригоранию в канавках поршня». Кому из главных и не очень главных конструкторов не захочется применить столь соблазнительную находку? Рассматривая «Скручивающиеся (торсионные) поршневые кольца», ученый относит к ним не только «клинообразные» кольца, но и другие виды колец, которые «имеют на внутренней поверхности в верхней ее части приблизительно прямоугольную выточку (уступ) или скос» (там же, стр. 439). Ни много, ни мало, и далее: «Кольца такой формы применяются для всех диаметров, которые встречаются в двигателях внутреннего сгорания». В большинстве конструкций отечественных ДВС можно увидеть подобную «выточку», «скос», или фаску, как это представлено в наших ГОСТах. В связи с этим вспоминаются простые компрессионные кольца прямоугольного профиля без каких-либо «выточек» и «фасок» на обоих торцах, без твердых покрытий рабочих поверхностей. Автор не помнит, чтобы в то время были особые претензии к компрессионным кольцам.
Из объяснения классика становится понятным, что «скручивающиеся» кольца получаются в результате того, что «…главные оси инерции образовавшегося (после выточки) несимметричного сечения кольца становятся не параллельными (и соответственно), неперпендикулярными к образующей рабочей поверхности, т. е. располагаются наклонно.
Если такое кольцо сжимают до рабочего размера, то оно не остается плоским в своей первоначальной плоскости, а принимает тарельчатую форму так, что нижняя кромка выступает несколько сильнее наружу, и только она приходит в соприкосновение с рабочей поверхностью цилиндра (фиг. 328)» (там же, стр. 439).
Рис. 2. Компрессионное кольцо с фаской на верхнем торце в динамике: 1 – цилиндр; 2 – поршень; 3 – компрессионное кольцо
Наверное, с этим следует согласиться, механика и газодинамика могут привести поршневое кольцо в подобное положение. Возникает вопрос, разве это не повредит уплотнительному кольцу выполнять свои основные функции?
Для автора почему-то такое положение кольца, воспроизведенное из первоисточника на рис. 2, не производит впечатления уплотняющего элемента. Причем, кроме устранения зазора между поршнем и цилиндром, уплотнительное, компрессионное кольцо, должно еще передавать избыточное тепло от перегретой головки поршня охлаждаемому цилиндру. Трудно представить какой-либо теплообмен между поршнем и цилиндром достаточно большой массы по линии?
Можно допустить, что такие насильственные изменения объемного положения трапециевидного кольца в пространстве оказывают определенное влияние на процесс нагарообразования.
Хотя немецкий ученый предостерегал: «Склонность к поломке у клинообразных колец несколько выше, чем у нормальных уплотнительных колец, так как они при неизбежных радиальных смещениях никогда полностью не могут прилегать к нижней торцовой поверхности канавки. Особенно это имеет место у клинообразных скручивающихся колец» (там же, стр. 444). Констатация поразительного факта, что уплотнительные кольца «никогда не могут прилегать» к нижней полке поршневой канавки, обозначает только одно, что между ними может быть зазор, который там по определению не должен быть ни при каких обстоятельствах. Отсюда следует очень простой вывод, ГОСТ регламентирует уплотнительные кольца, которые априори не предназначены для уплотнения, а только «для борьбы с пригоранием». А ведь на всех двигателях «автотракторостроения» именно такие уплотнительные кольца, к которым у специалистов нет претензий.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.