Ричард Фейнман - 1. Современная наука о природе, законы механики Страница 11

Тут можно читать бесплатно Ричард Фейнман - 1. Современная наука о природе, законы механики. Жанр: Разная литература / Прочее, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 1. Современная наука о природе, законы механики» бесплатно полную версию:

Ричард Фейнман - 1. Современная наука о природе, законы механики читать онлайн бесплатно

Ричард Фейнман - 1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман

В клетках живых организмов происходит множество хитро задуманных химических реакций: одно соединение превращает­ся в другое, затем в третье, затем еще и еще. Фиг. 3.1 дает некое представление о гигантских усилиях, предпринятых в изу­чении биохимии; там сведены воедино наши знания о малой доле того множества цепочек реакций (может быть, примерно 1% общего количества), которые происходят в клетке.

Фиг. 3.1. Цикл Кребса.

Вы видите здесь ряд молекул, последовательно превращаю­щихся одна в другую,— цикл с довольно мелкими шагами. Это — цикл Кребса, или дыхательный цикл. Судя по изменениям в молекулах, каждое вещество и каждый шаг в цикле доволь­но просты. Но эти изменения относительно трудно воспроиз­водятся, лабораторным путем. Это открытие необыкновенной важности в биохимии. Дело вот в чем. Если есть два сходных вещества, то как раз их-то часто нельзя превратить друг в дру­га, потому что эти две формы обычно отделены энергетическим барьером, «перевалом». Ведь, желая перенести предмет на новое место на том же уровне по другую сторону перевала, вы сперва должны поднять его над перевалом. Это требует добавочной за­траты энергии. По той же причине многие реакции не происхо­дят, им не хватает так называемой энергии активации. Если вы хотите присоединить к химическому соединению лишний атом, то для того, чтобы он пристал куда надо, его следует придви­нуть вплотную, иначе нужная перестановка не произойдет, он лишь немного взбежит по «склону» и скатится обратно. Но если б вы могли, буквально повертев молекулу в руках, раз­двинуть ее атомы, ввести в образовавшуюся дыру ваш атом и затем закрыть отверстие, то вы бы миновали подъем, никакой зат­раты энергии не понадобилось бы и реакция прошла бы легче. Так вот, в клетках и впрямь существуют очень большие моле­кулы (куда больше, чем те, чьи изменения изображены на фиг. 3.1), которые как-то умеют расставить малые молекулы так, чтобы реакция протекала без труда. Они, эти большие сложные устройства, называются ферменты (или закваска; назвали их так потому, что обнаружили их при сбраживании сахара. Кста­ти, первые из реакций цикла Кребса были открыты именно при сбраживании). Реакции цикла идут только в присутствии ферментов.

Сам фермент состоит из другого вещества — белка. Молеку­лы ферментов велики и сложны. Все ферменты отличаются друг от друга, причем каждый предназначен для контроля некоторой определенной реакции. На фиг. 3.1 возле каждой реакции обозначены названия нужного фермента (а иногда один фер­мент контролирует и две реакции). Подчеркнем, что сам фер­мент в реакцию не вовлекается. Он не изменяется, его дело толь­ко передвинуть атом с одного места в другое. Передвинет в одной молекуле и готов уже заняться следующей. Совсем как станок на фабрике, причем должен иметься запас нужных атомов и возможность избавляться от ненужных. Возьмите, на­пример, водород: существуют ферменты, имеющие специальные ячейки для переноса водорода в любой химической реакции. Скажем, имеются три или четыре фермента, которые понижают количество водорода; они используются во многих местах цик­ла. Интересно, что механизм, высвобождающий водород в од­ном месте, придерживает этот атом, чтобы использовать его еще где-нибудь.

Важнейшая деталь цикла, приведенного на фиг. 3.1, это превращение ГДФ в ГТФ (гуаназиндифосфат в гуаназинтрифосфат), потому что во втором веществе — ГТФ — энергии намного больше, чем в первом. Подобно тому как в некоторых ферментах имеется «ящик» для переноса атомов водорода, бы­вают еще особые «ящики» для переноса энергии; в них входит трифосфатная группа. В ГТФ больше энергии, чем в ГДФ, и когда цикл идет в одну сторону, создаются молекулы с избыт­ком энергии; они могут привести в действие другие циклы, которым требуется энергия, например цикл сжатия мышцы. Мышца не сократится, если нет ГТФ. Можно поместить в воду мышечное волокно и добавить туда ГТФ, тогда волокно сокра­тится, превращая ГТФ в ГДФ (если только присутствуют нуж­ные ферменты). Таким образом, сокращение мышцы есть прев­ращение ГДФ в ГТФ; накопленный в течение дня ГТФ исполь­зуется в темноте для того, чтобы пустить весь цикл в обратную сторону. Как видите, ферменту все равно, в какую сторону идет реакция; если б это было не так, нарушался бы один из законов физики.

Есть и другой резон, по которому для биологии и других наук важна именно физика,— это техника эксперимента. Например, нарисованная биохимическая схема не была бы еще до сего времени известна, если бы за нею не стояли боль­шие достижения экспериментальной физики. Дело в том, что для анализа этих невообразимо сложных систем нет лучшего средства, нежели ставить метки на атомах, участвующих в реакции. Если ввести в цикл немного углекислоты с «зеленой меткой» на ней и посмотреть, где метка окажется через 3 сек, потом через 10 сек и т. д., то можно проследить течение всей реакции. Но как сделать «зеленую метку»? При помощи раз­личных изотопов. Напомним, что химические свойства атомов определяются числом электронов, а не массой ядра. Но в атоме углерода, к примеру, может быть либо шесть, либо семь нейт­ронов наряду с обязательными для углерода шестью протона­ми. В химическом отношении атомы С12 и С13 не отличаются, но по массе и ядерным свойствам они различны, а значит, и разли­чимы. Используя эти изотопы, можно проследить ход реак­ции. Еще лучше для этого радиоактивный изотоп С14; с его помощью можно весьма точно проследить за малыми порциями вещества.

Вернемся, однако, к описанию ферментов и белков. Не все белки — ферменты, но все ферменты — белки. Существует множество белков, таких, как белки мышц, структурные бел­ки, скажем, в хрящах, волосах, коже, не являющихся фер­ментами. И все-таки белки — очень характерная для жизни субстанция; во-первых, это составная часть всех ферментов, а во-вторых, составная часть многих иных живых веществ. Структура белков проста и довольно занятна. Они представляют собой ряды, или цепи, различных аминокислот. Существует два десятка разных аминокислот, и все они могут сочетаться друг с другом, образуя цепи, костяком которых являются группы СО—NH и т. п. Белок — это всего лишь цепочки, сло­женные из этих 20 аминокислот. Каждая аминокислота, по всей вероятности, служит для каких-то специальных целей. В некоторых аминокислотах в определенном месте находится атом серы; два атома серы в одном и том же белке образуют связь, т. е. схватывают цепь в двух точках и составляют петлю. В других есть избыточный атом кислорода, придающий им кислотные свойства; характеристики третьих — щелочные. В некоторых бывают большие группы атомов, свисающие с одной стороны и занимающие много места. Одна из аминокис­лот — пролин — в действительности не амино-, а иминокислота. Эта небольшая разница приводит к тому, что когда в цепи есть пролин, то цепь перекручивается. Если бы вы захотели создать какой-то определенный белок, то вам пришлось бы дать такие указания: здесь поместите серный крюк, затем добавьте чего-нибудь, чтобы заполнить место, теперь привяжите что-ни­будь, чтобы цепь перекрутилась, и т. д. Получились бы скреп­ленные между собой замысловатые цепочки со сложной струк­турой; все ферменты, по-видимому, устроены именно так. Од­ним из триумфов современной науки было открытие (в 1960 г.) точного пространственного расположения атомов некоторых белков; в них 56—60 аминокислот подключены друг за другом. Было установлено точное местоположение свыше 1000 атомов (даже до 2000, если считать и водород), входящих в сложную структуру двух белков (один из них — гемоглобин). А одна из печальных сторон этого открытия проявилась в том, что из этой картины ничего увидеть нельзя; мы не понимаем, почему она такая. Именно эту проблему и следует сейчас атаковать.

Есть и другая проблема в биологии: откуда ферменты «знают», кем им стать? От красноглазой мухи рождается опять красно­глазая мушка; значит, вся информация о ферментах, создающих красный пигмент, должна перейти к очередной мушке. Передает эту информацию не белок, а вещество в ядре клетки, ДНК (дезоксирибонуклеиновая кислота). Это — та ключевая суб­станция, которая передается от одной клетки к другой (поло­вые клетки, например, почти целиком состоят из ДНК) и уно­сит с собой инструкцию, как делать ферменты. ДНК — это «калька», печатная матрица. На что похожа эта калька, как она должна действовать? Первое — она должна воспроизводить самое себя; второе — она должна быть способна давать задания белку. Что до первого, то можно было бы думать, что это про­исходит так же, как воспроизведение клеток: клетки подрас­тают и делятся пополам. Может быть, молекулы ДНК тоже растут и тоже делятся? Нет, это исключено. Ведь атомы на­верняка не растут и не делятся! Видимо, для репродукции мо­лекул нужен другой путь, похитрее.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.