Алекс Беллос - Красота в квадрате Страница 12
- Категория: Разная литература / Прочее
- Автор: Алекс Беллос
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 72
- Добавлено: 2019-05-13 16:27:18
Алекс Беллос - Красота в квадрате краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Алекс Беллос - Красота в квадрате» бесплатно полную версию:Алекс Беллос - Красота в квадрате читать онлайн бесплатно
Профессор Ципф обнаружил такую же обратно пропорциональную зависимость еще в одной книге — книге переписи населения США 1940 года. Однако в этот раз он подсчитывал не частотность слов, а численность населения крупных американских городов.
Муниципальный район
Ранг
Население
Нью-Йорк / северо-восток Нью-Джерси
1
12 миллионов
Кливленд
10
1,2 миллиона
Гамильтон/Мидлтаун
100
0,11 миллиона
В это трудно поверить, но и здесь прослеживается та же закономерность. В Нью-Йорке (самом крупном городе США) численность населения в десять раз больше, чем в Кливленде (десятом по величине городе), и в сто раз больше, чем в Гамильтоне (сотом по величине городе). Никто не предлагал американцам расселяться с такой точностью. Тем не менее их выбор подчинялся строгой закономерности. Это происходит и сейчас. На самом деле все мы поступаем именно так. На представленных ниже графиках в двойном логарифмическом масштабе отображены данные о численности населения американских городов и их ранге (порядковом номере), взятые из отчетов о переписи населения США 2000 года, а также данные о численности населения крупнейших городов мира.
Распределение численности населения крупнейших городов США в 2000 году (график сверху) и крупнейших городов мира в 2013 году (график снизу)
Все точки стремятся к прямой линии, как послушные муравьи. Это означает, что здесь, как и прежде, применимо все то же общее уравнение:
На этот раз Ципф тоже пришел к выводу, что для городов и стран значение константы a почти или равно 1. В случае американских городов это значение составляет 0,947, для крупнейших городов мира — 1,156, а в случае переписи населения США 1940 года равно 1.
Безусловно, имеются и отклонения, особенно в наиболее крупных странах и городах. Например, в действительности в Индии (второй самой густонаселенной стране мира) жителей больше, чем можно было бы ожидать, опираясь на закон Ципфа. Однако волатильность (изменчивость значений) в начале упорядоченного списка неизбежна, поскольку там намного меньше данных. Можно предположить, что города и страны обходят друг друга в рейтинге по мере изменения численности населения под влиянием экономических, социальных и экологических факторов. Когда подобные изменения происходят в странах, занимающих самые высокие места в списке, отклонение от прямой линии становится гораздо заметнее. Тем не менее такой разброс данных в верхней части графика не должен приуменьшать важности точного расположения точек далее вниз по линии. Из этого следует, что частота встречаемости слов, а также численность населения городов и стран подчиняются универсальному закону.
Для Ципфа обнаружение одной и той же элементарной математической закономерности в разных контекстах было равносильно духовному пробуждению. «В явлениях повседневной жизни мы находим единство, упорядоченность и равновесие, внушающие нам веру в высшую разумность всего сущего, целостность которого пребывает за пределами наших полномочий и понимания», — писал Ципф. Он предложил принцип наименьших усилий в качестве теоретической базы для своих эмпирических наблюдений. Мы часто используем ограниченное количество слов, потому что нашему мозгу так легче; мы живем в больших городах, потому что нам так удобнее. Однако Ципф так и не смог предоставить убедительное математическое обоснование закона, как, впрочем, и никто сто лет спустя. Многие пытались это сделать, и хотя некоторые даже добились определенных успехов в данном направлении, причина, почему закон действует, по-прежнему остается загадкой. Математические модели часто подвергают критике за то, что они слишком упрощают сложные закономерности. В случае закона Ципфа верно обратное утверждение: математические модели невероятно сложны, а закономерность настолько проста, что ее может понять даже ребенок.
В начале ХХ века итальянский экономист Вильфредо Парето заявил, что распределение богатства среди населения подчиняется следующему закону:
Очевидно, что с математической точки зрения закон Парето эквивалентен закону Ципфа. Если составить список всех граждан страны в порядке уменьшения их богатства, график распределения последнего будет выглядеть точно так же, как представленный выше график частоты использования слов в этой книге. В целом самый богатый человек страны существенно богаче второго наиболее состоятельного человека, а тот, в свою очередь, намного богаче (хотя и чуть меньше, чем в предыдущем случае) третьего наиболее состоятельного человека, который гораздо богаче (хотя и чуть меньше, чем в предыдущем случае) четвертого наиболее состоятельного человека и т. д. В общем, к категории богачей относится крохотное меньшинство населения, тогда как его подавляющее большинство живет в бедности. Парето вывел этот закон на основании данных из многих стран и череды столетий. И он по-прежнему актуален.
Обратно пропорциональная зависимость описывает ситуации, в которых имеет место предельное, вопиющее неравенство. В случае закона Ципфа крохотный процент слов выполняет почти всю работу. В случае закона Парето в руках крохотного процента населения сосредоточена основная часть капитала. В 1906 году Парето написал, что в Италии около 20 процентов людей владеют 80 процентами земли. Это меткое замечание вошло в массовую культуру как «принцип Парето», или закон 80/20, согласно которому 20 процентов причин порождает 80 процентов следствий — фраза, отражающая несправедливость жизни. По мнению Ричарда Коха, автора книги о законе Парето [9], 20 процентов сотрудников обеспечивают 80 процентов результата; 20 процентов покупателей приносят 80 процентов прибыли; 80 процентов счастья мы испытываем за 20 процентов времени. Ричард Кох пишет, что закон 80/20 — это ключ к управлению своей жизнью, поскольку мы можем преодолеть трудности современного мира только одним способом: сосредоточившись на 20 процентах самых важных вещей. Закон Парето хорошо запоминается благодаря своей арифметической точности: 80 + 20 = 100. Однако такая точность не всегда применима к математической модели, описываемой этим законом, так как обратно пропорциональная зависимость во многих случаях носит приближенный характер.
Как закон Парето, так и закон Ципфа гласят, что одна величина обратно пропорциональна определенной степени другой величины.
Если переменные величины — x и y, то общая формула этой математической зависимости выглядит так:
Уравнения данного типа обозначаются термином «степенной закон». Имена Ципфа и Парето носят два самых известных закона подобного рода, но за последние годы действие степенных законов проявилось в очень большом количестве самых разных ситуаций. Например, по результатам проведенного в Швеции опроса по поводу сексуальных привычек была установлена такая закономерность [10]:
процент мужчин, имевших минимум n половых партнеров на протяжении прошлого года
Символ ≈ говорит не о том, что шведские женщины предпочитают мужчин с волнистыми усами. Он означает «приблизительно равно» и используется здесь потому, что данное уравнение обеспечивает наилучшее приближение. Примерно один из тысячи шведских мужчин имеет в течение года двадцать половых партнеров, в то время как большинство — только одного. Если продолжить линию максимального приближения, то получится, что где-то один из десяти тысяч мужчин имеет около шестидесяти половых партнеров в год.
В любви — как на войне. Исследователи, изучавшие случаи насилия в зонах военных конфликтов, выявили следующую закономерность [11]:
процент инцидентов во время гражданской войны в Колумбии, в которых произошло не менее n смертей и ранений
Массовая гибель людей в результате военных действий наблюдается гораздо реже по сравнению с числом единичных случаев. Подобные выводы были сделаны в ходе анализа и сравнения данных о разных войнах. В мире велось всего несколько войн, повлекших за собой гибель миллионов людей; сотни тысяч людей лишились жизни в чуть большем количестве войн; еще больше войн унесло жизни десятков тысяч людей и т. д.
Чарльз Дарвин написал за свою жизнь тысячи писем, многие из которых представляли собой ответ на полученные письма. На большинство из них он отвечал в первый же день, а чтобы ответить на другие, ему понадобились годы [12]:
вероятность того, что Чарльз Дарвин ответит на письмо за n дней
Мы отвечаем на электронные письма по такой же схеме: на большинство даем ответ немедленно, тогда как некоторые лежат в папке «Входящие» целую вечность.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.