Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. Страница 16

Тут можно читать бесплатно Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.. Жанр: Разная литература / Прочее, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.

Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.» бесплатно полную версию:

Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. читать онлайн бесплатно

Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - читать книгу онлайн бесплатно, автор Никола Тесла

Для лучшего изучения данного предмета я провел несколько экспериментов с чрезвычайно высокими потенциалами и низкими частотами. При этом я наблюдал, что если поднести руку к лампе накаливания, — при этом нить накала соединена с одним из выводов катушки, — то можно ощутить мощные вибрации, образующиеся из-за притяжения и отталкивания молекул воздуха, которые электризуются посредством индукции через стекло. В некоторых случаях, когда это воздействие было очень интенсивным, я мог слышать звук, который должен вызываться той же причиной.

Когда чередования низкие, от колбы вполне можно получить очень сильный шок. Вообще, когда колбу или объекты некоторого размера подсоединяют к выводам катушки, надо следить за ростом потенциала, так как он может возникнуть от одного только подключения лампы или пластины к выводу, и потенциал может во много раз превысить свою первоначальную величину. Когда к выводам подключены лампы, как показано на Рис. 23, емкость ламп должна быть такой, чтобы при имеющихся условиях давать максимальный рост потенциала. Этим путем можно получать нужное напряжение при меньшем числе витков провода.

Срок службы таких ламп, как описаны выше, зависит в основном, конечно же, от степени откачки, хотя в какой-то мере и от формы бруска огнеупорного материала. Теоретически, казалось бы, маленькая сфера из углерода внутри стеклянной сферы не будет разрушаться из- за молекулярной бомбардировки, потому что, когда материя в колбе излучает, молекулы будут двигаться по прямым линиям и будут редко ударяться о сферу по косой. В связи с такой лампой возникает интересная мысль, что в ней "электричество" и электрическая энергия должны, по- видимому, двигаться одинаковым образом.

Использование переменных токов очень высокой частоты позволяет передавать посредством электростатической или электромагнитной индукции через стекло лампы достаточное количество энергии, чтобы удерживать нить в состоянии накала и таким образом обходиться без вводных проводов. Такие лампы предлагались, но они не могли успешно работать из-за отсутствия необходимого оборудования. Я сделал и провел эксперименты с множеством видов ламп, основанных на этом принципе, с непрерывными и разрывными нитями. Когда вторичную обмотку помещают внутрь лампы, лучше соединять со вторичной обмоткой конденсатор. Когда происходит передача посредством электростатической индукции, то конечно используется очень высокое напряжение с [самыми высокими] частотами, достижимыми с помощью машины. К примеру, при площади поверхности конденсатора в сорок квадратных сантиметров, что не является невыполнимо большим, и стекле хорошего качества толщиной 1 мм, при токе, переменяющемся 20 тысяч раз в секунду потребуется потенциал приблизительно в 9,000 вольт. Может показаться, что это много, но поскольку каждая лампа может быть включена во вторичную обмотку трансформатора очень малых размеров, то это не создаст никаких неудобств, и кроме того не будет приводить к фатальным травмам. Лучше, если все трансформаторы будут соединяться последовательно. Регулировка не вызовет никаких трудностей, так как при токах таких частот поддерживать константный ток очень легко.

На прилагаемых рисунках приводятся некоторые виды ламп такого рода. На Рис. 24 изображена лампа с разрывной нитью накала, а на Рис. 25а и 25Ь лампы с одной внутренней и внешней обкладкой и одной нитью накала. Я также изготовил лампы с двумя внутренними и внешними обкладками и непрерывным контуром, соединяющим последние. Такие лампы работали у меня от импульсов тока тех огромных частот, которые можно получить от пробойного разряда конденсаторов.

Пробойный разряд конденсаторов особенно хороню подходит для питания таких ламп — без наружных электрических соединений, — посредством электромагнитной индукции, когда эффекты электромагнитной индукции очень сильны. И я смог получать требуемую степень накала с помощью только лишь нескольких коротких витков провода. Этим способом так же можно добиться накаливания в простой замкнутой нити накала.

Не останавливаясь на рассмотрении осуществимости и практической целесообразности подобных ламп, мне бы хотелось только сказать, что они обладают прекрасной и очень привлекательной особенностью, а именно, что их можно, когда угодно, более или менее ярко накаливать просто меняя взаимное расположение внешних и внутренних конденсаторных обкладок, или индуцирующих и индуцируемых цепей.

Когда лампа зажигается от соединения ее только с одной клеммой источника, её работу можно улучшить, снабдив колбу внешней конденсаторной обкладкой, которая одновременно служит и рефлектором, и подсоединив ее к изолированному телу некоторого размера. Лампы такого типа изображены на Рис. 26 и 27. На Рис. 28 показана схема соединений. Яркость лампы в данном случае может регулироваться в широких пределах путем изменения размера изолированной металлической пластины, к которой подсоединена обкладка.

Похожим образом можно реально зажигать с одним подводящим проводом лампы вроде тех, что показаны на Рис. 20 и Рис. 21, подсоединяя одну клемму лампы к одному контакту источника питания, а другую — к изолированному телу нужного размера. Во всех случаях изолированное тело служит для сброса энергии в окружающее пространство и эквивалентно возвратному проводу. Очевидно, что в двух последних названных случаях вместо подсоединения проводов к изолированному телу соединение можно делать с землей.

Вероятно, наиболее впечатляющими и наиболее интересными для исследователя будут эксперименты с вакуумными трубками. Как можно ожидать, источник таких быстро переменяющихся потенциалов способен возбуждать эти трубки на большом расстоянии, и получаются замечательную световые эффекты.

Во время моих исследований в этом направлении я стремился возбуждать трубки без электродов с помощью электромагнитной индукции, делая трубку вторичной обмоткой индукционного устройства, и пропуская через первичную разряды Лейденской банки. Эти трубки были самых разных форм, и я мог получать эффекты свечения, которые, как я тогда думал, происходили полностью благодаря электромагнитной индукции. Однако, после более внимательного изучения этих явлений я обнаружил, что производимые эффекты более имели электростатическую природу. Этому обстоятельству можно приписать то, что такой вид возбуждения трубок является очень расточительным, а именно: когда первичная обмотка замкнута, то потенциал, а, следовательно, и электростатический индуктивный эффект значительно снижается.

Если используется индукционная катушка, работающая как описано выше, то без сомнения, трубки возбуждаются электростатической индукцией, и электромагнитная индукция имеет очень малое, если вообще какое-нибудь, отношение к данному явлению.

Это очевидно из многих экспериментов. Например, если экспериментатор стоять рядом с катушкой, возьмет трубку в одну руку, то трубка будет ярко светится, и свечение это будет оставаться таковым независимо от ее положения по отношению к телу экспериментатора. Будь это действие электромагнитным, трубка не могла бы светиться, когда тело экспериментатора находится между трубкой и катушкой, или же по меньшей мере это свечение значительно уменьшилось бы. Когда трубку держат точно над центром катушки, — при этом катушка намотана секциями, и первичная обмотка расположена симметрично вторичной, — трубка может оставаться совершенно темной, тогда как она начинает интенсивно светиться, если её немного передвинуть вправо или влево от центра катушки. Она не светиться, потому что в середине обе части катушки нейтрализуют друг друга, и электрический потенциал равен нулю. Если бы действие было электромагнитным, то трубка должна была бы светиться сильнее всего в плоскости, проходящей через центр катушки, поскольку электромагнитный там эффект был бы максимальным. Когда между контактами устанавливается дуга, то кубы и лампы затухают вблизи катушки, но вновь загораются, когда дуга прерывается, по причине возрастания потенциала. Хотя электромагнитное действие должно было бы быть в обоих случаях практически одинаковым.

Расположив трубку на некотором расстоянии от катушки, и ближе к одному контакту, — предпочтительно в точек на оси катушки, — трубку можно зажечь, дотронувшись до удаленного контакта изолированным предметом некоторого размера или же рукой, повышая тем самым потенциал на контакте, находящемся ближе к трубке. Если трубку передвинуть ближе к катушке так, чтобы она загоралась от воздействия ближнего контакта, ее можно заставить погаснуть, держа, на изолированной поддержке, конец провода, соединенного с дальним контактом, рядом с ближним контактом, тем самым противодействуя влиянию последнего на трубку. Эти явления очевидно электростатические. Аналогично, когда трубка располагается на значительном расстоянии от катушки, то исследователь может, стоя на изолированной подставке между катушкой и трубкой, зажечь трубку приблизив к ней руку; он может даже зажечь ее, просто встав между трубкой и катушкой. Это было бы невозможно при электромагнитной индукции, поскольку тело исследователя действовало бы как экран.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.