Педро Домингос - Верховный алгоритм Страница 20

Тут можно читать бесплатно Педро Домингос - Верховный алгоритм. Жанр: Разная литература / Прочее, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Педро Домингос - Верховный алгоритм

Педро Домингос - Верховный алгоритм краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Педро Домингос - Верховный алгоритм» бесплатно полную версию:

Педро Домингос - Верховный алгоритм читать онлайн бесплатно

Педро Домингос - Верховный алгоритм - читать книгу онлайн бесплатно, автор Педро Домингос

Замените «бога» на «обучающийся алгоритм», а «вечную жизнь» — на «точный прогноз», и вы получите теорему «Бесплатных обедов не бывает». Выберите себе любимый алгоритм машинного обучения (мы их много увидим в этой книге), и на каждый мир, где он справляется лучше случайного угадывания, я, адвокат дьявола, коварно создам другой мир, где он справляется ровно настолько же хуже: все, что мне надо сделать, — перевернуть ярлыки на всех случаях, которых вы не видели. Поскольку ярлыки на увиденных случаях совпадают, ваш обучающийся алгоритм никак не сможет различить мир и антимир, и в среднем из двух случаев он будет так же хорош, как случайное угадывание. Следовательно, если совместить все возможные миры с их антимирами, в среднем ваш обучающийся алгоритм будет равен подбрасыванию монетки.

Однако не торопитесь сдаваться и списывать со счетов машинное обучение и Верховный алгоритм. Дело в том, что нас заботят не все возможные миры, а только тот, в котором живем мы с вами. Если мы уже знаем что-то об этом мире и введем это в наш обучающийся алгоритм, у него появится преимущество перед произвольным угадыванием. На это Юм ответил бы, что знание как таковое тоже должно быть получено путем логической индукции и, следовательно, ненадежно. Это верно, даже если знание закодировано в наш мозг эволюцией. Однако нам приходится идти на этот риск. Еще можно задуматься: есть ли бесспорный, фундаментальный самородок знаний, на котором можно построить всю свою индукцию? (Что-то вроде Декартова «Я мыслю, следовательно, я существую», хотя сложно придумать, как превратить конкретно это утверждение в обучающийся алгоритм.) Я думаю, ответ — «да, есть», и мы увидим этот самородок в главе 9.

Практическое следствие теоремы «Бесплатных обедов не бывает» — то, что обучение без знаний невозможно. Одних данных недостаточно. Если начинать с чистого листа, мы придем к чистому листу. Машинное обучение — своего рода насос знаний. С помощью машинного обучения можно «выкачать» из данных много знаний, но сначала нам надо его заполнить данными, как насос перед пуском заполняют водой.

Машинное обучение с точки зрения математики относится к категории некорректно поставленных задач, так как единственного решения не существует. Вот простой пример: сумма каких двух чисел равна 1000? Если исходить из того, что числа положительные, у этой задачи 500 возможных ответов: 1 и 999, 2 и 998 и так далее. Чтобы решить некорректно поставленную задачу, придется ввести дополнительные условия. Если я скажу, что второе число в три раза больше первого, — все станет просто! Ответ — 250 и 750.

Том Митчелл, ведущий символист, называет это «тщетностью беспристрастного обучения». В обычной жизни слово «пристрастный» имеет негативный оттенок: предвзятость суждений — это плохо. Однако в машинном обучении предвзятые суждения необходимы. Без них нельзя учиться. На самом деле они незаменимы и для человеческого познания, но при этом так жестко встроены в наш мозг, что мы принимаем их как должное. Вопросы вызывает только пристрастность, выходящая за эти рамки.

Аристотель говорил, что в разуме нет ничего такого, чего не было бы в органах чувств. Лейбниц добавил: «Кроме самого разума». Челове­ческий мозг — это не tabula rasa, потому что это совсем не доска: доска пассивна, на ней пишут, а мозг активно обрабатывает получаемую информацию. Доска, на которой он пишет, — это память, и она и впрямь сначала чиста. С другой стороны, компьютер — действительно чистая доска, до тех пор пока его не запрограммируют: активный процесс надо заложить в память, прежде чем что-нибудь произойдет. Наша цель — найти простейшую программу, какую мы только можем написать, чтобы она продолжала писать саму себя путем неограниченного чтения данных, пока не узнает все, что можно узнать.

У машинного обучения имеется неотъемлемый элемент азартной игры. В конце первого фильма про Грязного Гарри Клинт Иствуд гонится за ограбившим банк бандитом и раз за разом в него стреляет. Наконец грабитель повержен. Он лежит рядом с заряженным ружьем и не знает, хватать его или нет. Было шесть выстрелов или только пять? Гарри сочувствует (если можно так выразиться): «Тебе надо лишь спросить: “Повезет или нет?” Ну как, мерзавец?» Этот вопрос специалисты по машинному обучению должны задавать себе каждый день, когда они приходят на работу. Повезет или нет? Как и эволюция, машинное обучение не будет каждый раз попадать в десятку. Вообще говоря, ошибки — не исключение, а правило. Но это нормально, потому что промахи мы отбрасываем, а попаданиями пользуемся, и важен именно совокупный результат. Когда мы получаем новую частицу знаний, она становится основой для логической индукции еще большего знания. Единственный вопрос — с чего начать.

Подготовка насоса знаний

В «Математических началах натуральной философии» наряду с законами движения Ньютон формулирует четыре правила индукции. Они далеко не так известны, как физические законы, но, пожалуй, не менее важны. Ключевое правило — третье, которое можно перефразировать так:

Принцип Ньютона: то, что верно для всего, что мы видели, верно для всего во Вселенной.

Не будет преувеличением сказать, что это невинное вроде бы утвержде­ние — сердце ньютоновской революции и современной науки. Законы Кеплера применялись ровно к шести сущностям — планетам Солнечной системы, которые в то время были известны. Законы Ньютона применимы ко всем до единой частицам материи во Вселенной. Прыжок в обобщении между этими законами просто колоссальный, и это прямое следствие сформулированного Ньютоном правила. Приведенный выше принцип сам по себе — насос знаний невероятной мощи. Без него не было бы законов природы, а только вечно неполные заплатки из небольших закономерностей.

Принцип Ньютона — первое неписаное правило машинного обучения. Путем индукции мы выводим самые широко применимые законы, какие только возможно, и сужаем их действие, только если данные вынуждают нас это сделать. На первый взгляд это может показаться чрезмерной, даже нелепой самоуверенностью, но в науке такой подход работает уже более трех сотен лет. Безусловно, можно представить вселенную настолько разно­родную и капризную, что Ньютонов принцип будет систематически терпеть поражение, но наша Вселенная не такая.

Тем не менее принцип Ньютона лишь первый шаг. Нам все еще надо найти истину во всем том, что мы увидели: извлечь закономерности из сырых данных. Стандартное решение: предположить, что форму истины мы знаем, а работа алгоритма машинного обучения — это облечь ее в плоть. Например, в описанной выше проблеме со свиданием можно предположить, что ответ девушки будет определяться чем-то одним. В таком случае обучение заключается просто в рассмотрении всех известных факторов (день недели, тип свидания, погода, телепрограмма) и проверке, всегда ли корректно они предопределяют ответ. Сложность в том, что ни один фактор не подходит! Вы рискнули и проиграли, по­этому немного ослабляете условия. Что если ответ девушки определяется сочетанием двух факторов? Четыре фактора по два возможных значения для каждого — это 24 варианта для проверки (шесть пар факторов, из которых можно выбирать, умноженные на два варианта для каждого значения фактора). Теперь у нас глаза разбегаются: целых четыре сочетания двух факторов корректно предсказывают результат! Что делать? Если вы чувствуете удачу, можете выбрать какой-то из них и надеяться на лучшее. Однако более разумный подход — демократический: дайте им «проголосовать» и выберите победивший прогноз.

Если все сочетания двух факторов проигрышные, можно попробовать все сочетания любого числа факторов. Специалисты по машинному обучению и психологи называют это «конъюнктивными понятиями». К таким понятиям относятся словарные определения: «У стула есть сиденье, и спинка, и некоторое число ножек». Уберите любое из этих условий, и это уже будет не стул. Конъюнктивное понятие можно найти у Толстого в первой строке «Анны Карениной»: «Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему». То же верно и для отдельных людей. Чтобы быть счастливым, нужны здоровье, любовь, друзья, деньги, любимая работа и так далее. Уберите что-то из этого списка, и человек будет несчастлив.

В машинном обучении примеры концепции называют положительными примерами, а контрпримеры — отрицательными. Если вы пытаетесь научиться узнавать кошек на картинке, изображения кошек будут положительными примерами, а собак — отрицательными. Если составить базу данных семей из мировой литературы, Каренины будут отрицательным примером счастливой семьи, но найдется и некоторое количество драгоценных положительных примеров.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.