Журнал «Юный техник» - Юный техник, 2002 № 04 Страница 12
- Категория: Разная литература / Периодические издания
- Автор: Журнал «Юный техник»
- Год выпуска: -
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 14
- Добавлено: 2019-07-31 11:20:31
Журнал «Юный техник» - Юный техник, 2002 № 04 краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Журнал «Юный техник» - Юный техник, 2002 № 04» бесплатно полную версию:Популярный детский и юношеский журнал.
Журнал «Юный техник» - Юный техник, 2002 № 04 читать онлайн бесплатно
Однако судно предназначено для достижения рекорда и сохраняет устойчивость только при ветре, дующем с одной стороны.
На рисунке 4 изображена модель парусника с жестким крылом, в которой чувствуется влияние идей Смита.
Рис. 4
Изобретатель надеялся получить устойчивое мореходное судно, способное перевозить груз в 25 т со скоростью около 60 км/ч.
Величина значительная, но до буеров этому паруснику далеко. Во всех этих случаях аэродинамическое качество крыла-паруса с учетом воздушного сопротивления корпуса судна не превышало десяти.
Увеличение скорости крылатых судов требует дальнейшего повышения качества их воздушных и подводных крыльев, но традиционный способ, основанный на улучшении профиля и повышении относительного удлинения, себя исчерпал. Возможно, сегодня в аэрогидродинамике происходит тихая революция. Появились компьютерные программы, позволяющие моделировать обтекание жидкостью или газом любых тел.
Московский изобретатель О.Г. Войцех обратился к старой идее решетчатого крыла, аналогичного птичьему. Оказалось, что при скоростях менее 150 км/ч аэродинамическое качество его на воздухе достигает 300! Продувки модели в аэродинамической трубе показали правильность выбранного пути. Если так, то ждите наступления эры крылатых судов! Тем же, кто не захочет сидеть сложа руки, для начала рекомендуем читать книги и статьи Ю.С. Крючкова, публиковавшиеся до 1991 года в известном ежеквартальном сборнике и журнале «Катера и яхты», и строить модели. Успехов вам!
А.ИЛЬИН
Рисунки автора
ФИЗИКА В ШКОЛЕ
Капли, которые гуляют сами по себе
Обычно жидкость под влиянием силы тяжести принимает форму того сосуда, в который она налита. В состоянии невесомости вода собирается в одну большую шарообразную каплю. Это было можно видеть в кинофильме космонавта Серебрякова «Физика в космосе», снятом на борту станции «Мир».
Действие силы тяжести мы не умеем устранять полностью, поэтому в земных условиях не сможем точно повторить космические опыты. Но порою действие силы тяжести на жидкость бывает не столь уж значительно, это дает возможность наблюдать поразительные явления.
Возьмите стакан и налейте его до краев. Сколько воды можно подлить в полный стакан? Чтобы ответить на этот странный вопрос, попробуйте добавлять воду пипеткой по капельке. Капля, две, три, десять, пятьдесят… Можно добавлять воду не по капельке, а целыми пипетками. Но и на эту процедуру вы потратите много времени, прежде чем вода начнет выливаться.
Присмотритесь, ее поверхность поднялась над краями стакана, и вода ведет себя так, будто ее удерживает эластичная пленка. Состоит она из молекул, между которыми активно действуют силы взаимного притяжения. С увеличением объема жидкости пленка «растягивается». Образуется «горка» воды (рис. 1).
Это явление называется поверхностным натяжением. Влияние поверхностной пленки особенно заметно, когда объем жидкости мал.
Капните на чистую стеклянную пластинку воду, масло и тушь. Они растекутся по стеклу лужицей. Это называется смачиванием. Объясняется оно тем, что молекулы жидкости притягиваются молекулами твердого тела сильнее, чем друг к другу.
Растопите на водяной бане немного парафина. Вылейте его на стекло ровным слоем и дайте застыть. (Парафин можно купить в аптеке или взять из обычной белой свечки. Цветной парафин, применяемый в декоративных свечах, для опытов не годится.)
Капните из пипетки на покрытую парафином пластину воду, масло или тушь. Масло по-прежнему растекается по поверхности. Капельки же воды и туши на поверхности воска станут похожи на «лепешечки». Немного наклоните подложку — капельки устойчиво держатся на ней.
Силы взаимодействия молекул жидкости между собой и с молекулами твердой поверхности примерно одинаковы. Про капли воды и туши мы говорим, что они частично смачивают поверхность воска.
Закоптите на свечке стеклянную пластину или кусочек жести. Капните на нее масло, воду и тушь. Масло смачивает сажу и растекается лужицей, а вот вода и тушь образуют шарообразные капельки. При этом чем они меньше, тем круглей. Наклоните подложку, и капли мгновенно скатятся. Листья некоторых растений, подобно закопченной поверхности, не смачиваются водой и на них становятся видны капельки росы.
Однако глаз здесь не все успевает заметить. Дополните его видеокамерой, произведите съемку крупным планом с увеличенной частотой кадров, а фильм просмотрите с обычной частотой. Вы увидите, что капли на саже подвижны, непрерывно колеблются, как бы «дышат». Они скатываются не как твердые шарики, а как слабо надутые резиновые мячи, проминающиеся в местах соприкосновения с поверхностью.
На пластинку, покрытую сажей, поместите капельку воды. Поднесите к ней наэлектризованную палочку. Капелька воды вытянется в сторону электрического поля. Она может перекатываться и даже подпрыгивать.
Опустите в воду пластину, покрытую сажей. Разверните ее под некоторым углом. На ваших глазах она из черной превратится в зеркально-серебристую. В чем тут дело?
Сажа не смачивается водой. При погружении пластины в воду между сажей и водой образуется слой воздуха, от которого отражается свет.
Таким свойством обладает не только сажа. Опустите в воду клубок шерсти. Он тоже станет серебристым. Кстати, в водоемах встречается паук-серебрянка. Он плетет под водой дом-купол и приносит в него с поверхности воздух на ворсинках своего тела. Погружаясь в воду, паук становится серебристым, как клубок шерсти в предыдущем опыте. А теперь несколько опытов с жидкостью, находящейся в условиях, близких к невесомости.
Бельгийский ученый Плато поставил следующий опыт. Он подобрал две несмешивающиеся жидкости одинаковой плотности: прованское (оливковое) масло и смесь воды и спирта.
Поскольку плотности жидкостей одинаковы, то вес капельки масла в смеси равен нулю. Капелька не тонет и не всплывает, находится в состоянии невесомости! При этом ее форма почти идеально сферическая!
Повторите опыт Плато в небольшой плоской кювете, заменив дорогое оливковое масло машинным. Налейте на дно кюветы немного спирта. Затем из пипетки или трубочки впрысните капельку масла. Плотность масла больше плотности спирта, поэтому она ляжет на дно. Аккуратно, маленькими порциями, доливайте воду, и капелька масла начнет всплывать.
Вы увидите два слоя жидкости: нижний — спиртовой раствор голубоватого оттенка, верхний — прозрачный слой воды. Между слоями большая капля машинного масла, сверху красная, внизу прозрачная. Большую каплю обычно сопровождают несколько маленьких (рис. 4).
Рис. 4
Понаблюдайте за образованием капли на кончике пипетки. Вначале образуется полусферическая оболочка. Она растет, как бы раздувается, стремясь принять некую удлиненную шарообразную форму. Вот появляется тонкая шейка, и капля отрывается (рис. 3).
На какой-то миг она превращается в шар. Этот шар начинает падать и очень быстро под действием сопротивления воздуха приобретает форму падающей капли. Между тем процесс на кончике пипетки на этом не завершается. Шейка, от которой уже отделилась первая капля, продолжает удлиняться и стремительно превращается в новую каплю, поменьше. Процесс протекает быстро. Всех деталей не углядеть. Обычно мы не успеваем заметить большую каплю. Конечно, можно замедлить картину, применив киносъемку. Но можно поступить проще (рис. 2).
Налейте в пробирку прозрачное растительное масло и начните капать в нее воду из пипетки. Капля должна пробивать поверхность масла и опускаться на дно. Если сразу это не получится, придется увеличить порцию воды. Из двух-трех капель, образовавшихся в воздухе, в масле формируется только одна. Под лупой можно увидеть, что она имеет почти идеальную сферическую форму. Опускается на дно медленно и равномерно и там долго сохраняет свою шарообразную форму.
Плотность масла близка к плотности воды. Сила Архимеда почти уравновесила силу тяжести, и получилось состояние, близкое к невесомости. Силы поверхностного натяжения стремятся придать жидкости форму с минимальной поверхностной энергией. Этому условию отвечает форма сферы.
Налейте в пробирку подсолнечное масло, а сверху — машинное. Должно получиться два слоя с четкой границей. Машинное масло недостаточно прозрачно, имеет красноватый цвет. Покрасьте воду тушью и понаблюдайте, как одна и та же капелька жидкости, проходя через различное масло, меняет свою форму. Плотность машинного масла меньше, чем подсолнечного, поэтому и выталкивающая сила меньше. Капельки в нем опускаются быстрее, с ускорением. Сила тяжести делает их форму чуть сплющенной по вертикали. Но, входя в нижний слой прозрачного масла, капелька вновь становится похожей на шар.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.