Журнал «Юный техник» - Юный техник, 2005 № 07 Страница 12
- Категория: Разная литература / Периодические издания
- Автор: Журнал «Юный техник»
- Год выпуска: -
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 14
- Добавлено: 2019-07-31 11:38:08
Журнал «Юный техник» - Юный техник, 2005 № 07 краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Журнал «Юный техник» - Юный техник, 2005 № 07» бесплатно полную версию:Популярный детский и юношеский журнал.
Журнал «Юный техник» - Юный техник, 2005 № 07 читать онлайн бесплатно
Если КПД ТЭНа близок к 100 %, то у механического теплогенератора он не выше, чем у приводящего его в движение электромотора — 90–95 %. Потеря энергии должна была, по мнению Григгса, окупиться снижением затрат на ремонт системы отопления из-за частого выхода ТЭНов из строя.
Опыт подтвердил правоту инженера. Механический теплогенератор надежно работал в системе отопления зданий. На него не влияли содержавшиеся в воде соли и механические примеси. Но когда стали подсчитывать затраты на отопление, то вместо ожидавшихся 10 % потерь неожиданно получили 14 % экономии по сравнению с системой, где применялись ТЭНы. Откуда-то брался избыток энергии.
Теплогенераторы охотно покупали, но Григгса продолжал волновать вопрос, откуда берется избыток энергии. В 1992 г. он поставил контрольный опыт. В лабораторных условиях теплогенератор забирал воду из бака с добротной тепловой изоляцией и возвращал обратно. Энергия, потребляемая мотором теплогенератора, измерялась при помощи точных приборов.
Через час работы системы температуру воды в баке замерили, подсчитали и выяснили: каждый джоуль электроэнергии, пришедший из сети, создавал в баке 1,5 Дж тепла!
Сегодня, потратив 2–3 тысячи долларов, вы можете купить кондиционер, способный работать в режиме теплового насоса и на каждый Дж электроэнергии выдавать более двух Дж тепла. Но избыток тепла он берет из уличного воздуха — засасывает теплый, а выбрасывает холодный. В теплогенераторах Григгса этого нет. Нет и никакого внятного объяснения причин появления в них избытка энергии. Существуют лишь догадки.
Думали, что в воде происходят термоядерные реакции между атомами присутствующего в ней тяжелого водорода. Но тогда при работе генератора возникала бы радиация, а ее не обнаружили.
Думали, что молекулы воды как-то соединяются друг с другом и это приводит к выделению энергии. Тогда на выходе генератора в больших количествах появлялась бы гипотетическая «полимерная вода». Но нигде никто и никогда ее не обнаружил.
Есть и гипотезы об извлечении энергии из физического вакуума, но сегодня они вообще не поддаются проверке.
Когда тайна теплогенератора будет раскрыта, сказать трудно. Но построить его модель вы можете уже сейчас.
Вот как он устроен (рисунок взят из патента США № 5 188 090) (рис. 2).
Рис. 2
В цилиндрическом корпусе, выточенном из стали, расположен алюминиевый ротор со сверлениями на ободе. Корпус закрыт плоской крышкой на винтах. Вода поступает через зазор между боковой поверхностью ротора, обтекает его со стороны обода и через другой боковой зазор вытекает, уже нагретая. В зазорах вода нагревается за счет трения, и в ней образуется множество газопаровых пузырьков. Основные же события происходят на ободе (рис. 3).
Здесь идут два процесса. Сначала ячейки заполняются водой. Она смачивает их стенки и прилипает к ним. Но под действием центробежной силы вода в них начинает растягиваться, как бы рвется, и вылетающие капли с большой скоростью ударяют в стенку. Возникает ударная волна, и возрастает давление. Волна встречает на своем пути многочисленные газопаровые пузырьки и схлопывает их. Происходит кавитация. В центре пузырька возникает громадное давление — от 12 до 450 тыс. атм. В этой-то зоне и возникают непонятные пока физические события.
Обычно теплогенераторы Григгса делают на мощности в несколько десятков кВт. Диаметры их роторов достигают 300 и более мм при скорости вращения 3000 об/мин. Но если, например, увеличить ее вдвое, те же явления будут происходить и на роторе диаметром 75 — 100 мм. Сделать его можно на школьном токарном станке. Ротор и статор такого теплогенератора для демонстрации и лабораторных работ показаны на рисунке. В качестве привода для него подойдет любой асинхронный двигатель мощностью более 0,5 кВт с ременной повышающей передачей. В ней могут быть использованы шкивы, применяемые в легковых автомобилях.
Для определения эффекта получения избытка энергии нужно замерить энергию, получаемую электромотором, и сравнить ее с той, что дает теплогенератор.
Энергопотребление мотора замеряют при помощи обычного электросчетчика. Энергию, выдаваемую теплогенератором, подсчитывают, измеряя массу и температуру полученной горячей воды.
В нашем случае можно получить тепловую мощность 1–1,5 кВт, что может быть полезно в хозяйстве и наведет вас на мысль о необходимости постройки более мощного устройства.
Для этого мы рекомендуем ознакомиться с книгой: Л.П.Фоминский. Роторные генераторы дарового тепла. Сделай сам. Черкассы, «ОКО-Плюс», 2003.
Предупреждаем, что книга очень своеобразна. Примерно половина ее посвящена технике и науке, а другая — политике. Техническая часть написана очень хорошо; именно ее мы и рекомендуем прочитать.
А.ИЛЬИН
Почти без электроники
Как мы уже рассказывали (см. «ЮТ» № 6 за 2005 г.), телевизионный приемник появился в начале 20-х годов прошлого века и был в основном механическим, а вся его электроника состояла из двух обычных радиовещательных приемников. Один из них принимал телевизионный сигнал, другой — звуковое сопровождение. Высшая частота модуляции телесигнала достигала 7500 Гц, поэтому телепередачи велись на средних и коротких волнах и их можно было принимать даже на другом берегу Атлантического океана.
Принятый телевизионный сигнал подавался на неоновую лампу. Ее свет реагировал на модуляцию телевизионного сигнала, нес всю информацию о передаваемом изображении. Но ее еще нужно было превратить в изображение.
Делали это чаще всего двумя способами. Самый простой из них — это установка перед лампой диска Нипкова (рис. 1) и ограничительной рамки. В соответствии с принятым тогда стандартом, диск имел тридцать отверстий, расположенных по спирали, и вращался со скоростью 12,5 оборота в секунду.
При неподвижном диске через ограничительную рамку было видно одно из отверстий. Освещенное лампой, оно казалось светящейся точкой. Но когда же диск вращался, глаз воспринимал светящуюся строку. (Так превращается в круг свет от быстро вращаемого в темноте фонарика.) Поскольку яркость лампы постоянно изменялась, то и яркость отдельных участков строки получалась различной. Так возникала строка телевизионного изображения.
В каждой строке укладывалось сорок точек. Таким образом, один кадр состоял из 1200 элементов. За один оборот диска в пределах ограничительной рамки возникал один телевизионный кадр, а за секунду — 12,5 кадра.
Несмотря на то что зритель за секунду получал в 600 раз меньше информации, чем получает сегодня на экране ТВ нормальной четкости, механическое телевидение имело успех. Можно было легко опознать любимых актеров, а если изображение давалось во весь экран, то и полюбоваться их красотой.
Телевизоры с диском Нипкова были крайне просты. В промышленных образцах диск вращался при помощи крохотного синхронного электромоторчика. Это была самая сложная его часть. Однако любители делали такие моторы самостоятельно, а иногда и обходились без них. Диск вращали при помощи рукоятки через ременную передачу и получали вполне удовлетворительное изображение. Принципиальным недостатком диска Нипкова была низкая яркость изображения. Сквозь отверстие диска проходила лишь малая часть света тускловатой лампы. Практически наблюдать изображение мог лишь один человек, и то через лупу.
Значительно лучше использовался свет в простейших телевизорах с разверткой зеркальным винтом (рис. 2).
Он состоял из тридцати металлических пластин, спирально насаженных на вертикальную ось. Одна из их граней была отполирована как зеркало. Рядом с зеркальным винтом ставилась неоновая лампа с ярким свечением в щели между электродами. Пока винт был неподвижен, в одной из его граней было видно отражение кусочка щели лампы. Как только зеркальный винт начинал вращаться, отражение пробегало от одного конца грани до другого, прочерчивало строку и уходило из поля зрения. А вслед за ним появлялось изображение в другой грани. Как утверждал журнал «Радиофронт», возле небольшого, размером с коробку от торта, телевизора с зеркальным винтом могло располагаться до 30 человек. В это можно поверить лишь с учетом крайней неприхотливости первых телезрителей (рис. 3).
Четкость в 30 строк оставляла желать лучшего. В Англии ее повысили до 60 строк. Качество изображения получилось сравнительно высоким, полоса частот увеличилась до 30 кГц, но сигнал еще можно было передавать на коротких волнах в свободном радиоэфире того времени.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.