Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год Страница 15

Тут можно читать бесплатно Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год. Жанр: Разная литература / Периодические издания, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год

Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год» бесплатно полную версию:

Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год читать онлайн бесплатно

Вокруг Света - Журнал «Вокруг Света» №08 за 2008 год - читать книгу онлайн бесплатно, автор Вокруг Света

Между тем еще в начале 1970-х человечество испытало первый нефтяной кризис. Случилось это 16 октября 1973 года во время конфликта Израиля с Сирией и Египтом , получившего название Войны Судного дня. В тот день арабские страны объявили, что не будут продавать нефть государствам, поддерживающим Израиль. И уже к вечеру цены на «черное золото» подскочили с 3 до 5 долларов за баррель (чуть меньше 160 литров), а за следующий год цены выросли до 12 долларов. В результате, хотя Израиль победил в вооруженном конфликте, оказалось нелегко определить, кто же в итоге извлек из него больше выгоды. Ведь именно тогда арабские страны почувствовали, что, используя цены на нефть, могут управлять почти всем миром.

С тех пор нефтяные кризисы сотрясают планету с завидной регулярностью: в 1979 году — в связи с войной между двумя крупными нефтедобытчиками Ираном и Ираком ; в 1990 году — в связи с нападением Ирака на Кувейт ; в 2000 году — когда оказалось, что мировая транспортная инфраструктура не справляется с растущими потребностями в нефти. С того времени цена на нефть упорно ползет вверх.

Тот факт, что от нефтяной зависимости необходимо освобождаться, стал очевиден уже во время первых кризисов, поэтому к началу 1980-х годов исследования и разработки в области альтернативной энергетики были расконсервированы и продолжены.

Промышленные альпинисты проверяют состояние ротора ветродвигателя на ВЭС в земле Бранденбург, Германия. Фото: LAIF/VOSTOCK PHOTO

По горизонтали и по вертикали

Главным источником ветровой энергии на нашей планете, как и двигателем большинства других земных процессов, служит самая близкая к нам звезда — желтый карлик по имени Солнце . Именно его излучение, неравномерно нагревая планету, создает в ее атмосфере зоны различного давления. Воздух стремится перетечь из зоны высокого давления в зону низкого. Эти перемещения образуют крупномасштабные воздушные течения, которые называются ветром. Принято считать, что он «начинается» со скорости движения воздуха 0,6 м/с. Все, что находится ниже этой черты, определяется как штиль. Однако ветровая энергетика более требовательна, для нее необходима скорость ветра не ниже 5—6 м/с. Лишь при такой скорости ветрогенераторы начинают вырабатывать энергию надлежащего качества. Оптимальной считается сила ветра 14—17 м/с. У поверхности земли такие скорости бывают нечасто, поэтому ветряки устанавливаются на башни высотой десятки метров.

Современные ветродвигатели делятся на два основных типа: карусельные, с вертикальной осью вращения, и крыльчатые — с горизонтальной. Последние имеют более привычный вид, напоминающий старые мельницы, только лопастей у них меньше. Строители старинных неторопливо крутящихся ветряков старались сделать побольше «крыльев», чтобы лучше использовать силу ветра. Однако эффективность растет с числом лопастей нелинейно: четыре лопасти не будут вдвое эффективнее, чем две. А с ростом скорости вращения эффективность все больше зависит от аэродинамических показателей, а не от числа лопастей. Если учесть, что в мощных ветроустановках до 40% стоимости может приходиться на ротор, то становится понятным, почему сегодня у большинства мощных ветряков лишь две-три лопасти (а в некоторых случаях, правда довольно редко, — всего одна с противовесом). Основным параметром, влияющим на мощность установки, является длина лопастей. Она доходит до 60 метров, а то и больше в отдельных случаях. Их длина ограничена скоростью движения концов лопастей, которая не должна превосходить примерно треть скорости звука. К тому же по расчетам инженеров корпорации Boeing, ведущей компании по производству лопастей для промышленных ветрогенераторов, при диаметре ротора более 120 метров растет риск того, что разновысотные ветры просто разнесут дорогую установку.

Чтобы эффективность установки была максимальной, ее надо разворачивать перпендикулярно ветру. В маленьких бытовых ветрогенераторах с этой задачей справляется хвостовой стабилизатор, действующий по принципу флюгера. Однако повернуть промышленный ветрогенератор общим весом в десятки, а то и сотни тонн такой стабилизатор уже не в силах, и эти функции возложены на специальную систему электронного управления рысканьем (поворотами по азимуту).

В карусельных ветряках такая система не нужна, и это одно из главных их преимуществ. Работа такой установки не зависит от направления ветра, а высота не ограничена теми максимальными 120 метрами, что останавливают проектировщиков крыльчатых установок. Вдобавок карусельные ветряки начинают работать при значительно меньшей скорости ветра, чем крыльчатые.

Устанавливаемый на крыше бытовой ветряк дает мощность до 1,5 кВт. При стоимости устройства около 5 тысяч фунтов стерлингов электричество получается в несколько раз дороже промышленного. Фото: SPL/EAST NEWS

Простейший карусельный ветряк используется в приборе для измерения скорости ветра — анемометре. На концах горизонтальной перекладины закреплены чашки. В одну из них ветер «задувает», а другую «обдувает» со дна. Ясно, что давление воздуха на первую чашку будет больше, чем на вторую. Перекладина начинает вращаться вокруг вертикальной оси, и чем сильнее ветер, тем быстрее. На ось можно насадить много таких перекладин, а еще удобнее прикрепить к ней высокие корытообразные лопасти. Теоретически их высота может измеряться хоть километрами.

Однако при всех плюсах карусельных ветряков коэффициент полезного использования силы ветра у крыльчатых конструкций пока значительно выше, поэтому и распространены они гораздо шире. Сейчас на их долю приходится более 90% всех промышленных энергоустановок в мире. Положение могут изменить ортогональные карусельные ветряки. В них лопасти-полубочки заменены вертикальными крыльями, сделанными по принципу самолетных. Такой ветродвигатель сначала надо закрутить с помощью какого-нибудь стороннего агрегата, зато, выйдя на рабочий режим, он теоретически способен развить мощность в 20 МВт, в то время как самые мощные «крыльчатки» выдают 5—6 МВт.

Ветровых генераторов построено уже немало. Одна только датская фирма Vestas Danich Wind Technology с начала 1980-х годов возвела по всему миру более 11 тысяч ВЭС. На Западе ветровая энергетика входит в число самых быстрорастущих отраслей энергодобычи. По данным Всемирной ветроэнергетической ассоциации (WWEA), суммарная установленная мощность ВЭС в мире увеличивается на 25—27% в год и в конце 2007-го достигла 94 ГВт — это примерно 1,3% от всего объема потребляемой человеком энергии. Тут, правда, надо учитывать, что из-за неравномерности ветровой нагрузки реальная энергоотдача ВЭС оказывается в 2—6 раз ниже установленной мощности. Тем не менее в некоторых странах, например в Дании , доля ветровой энергетики составляет более 20%. А в Испании 22 марта 2008 года дули такие сильные ветра, что местные ВЭС обеспечили в тот день 40,6% всего энергопотребления страны.

Безусловным лидером ветроэнергетики является Германия , где установлено более 22 ГВт ветровых мощностей. Здесь работают и самые крупные в мире ветрогенераторы мощностью 6 МВт (компания Enercon, 2005 год) и 5 МВт (REpower Systems, 2004 год). Высота башни 5-мегаваттного исполина составляет 120 метров, диаметр ротора — 126 метров, а гондола (верхняя часть установки, включающая турбину и генератор) весит более 200 тонн. В пятерку лидеров ветроэнергетики входят также США (16,8 ГВт), Испания (15,1 ГВт), Индия (7,9 ГВт) и Китай (6 ГВт).

Змей-мореход

В феврале 2008 года в свое первое плавание по маршруту Германия — Венесуэла отправилось грузовое судно Beluga SkySails. В этом не было бы ничего примечательного, если бы судно это не оказалось первым океанским «грузовиком», приводимым в движение настоящим воздушным змеем. Правда, кайт, как на технологическом языке называется змей, тащит корабль не в одиночку, а вместе с судовыми двигателями, но его применение позволяет экономить около 20% топлива. Проекты использования в помощь морякам ветра существовали и раньше, но идеи новых парусников разбивались о необходимость оборудовать их гигантскими мачтами. Парусу этого корабля мачты не требуются, а управление им полностью компьютеризировано. Даже точка крепления буксировочного троса к корпусу выбирается программой в зависимости от того, куда и с какой скоростью должен идти корабль и как дует ветер.

Проблемы чистого источника

Применение современных технологий, постройка новых мощных генераторов и государственная поддержка позволили значительно снизить себестоимость электричества, производимого на ветряках. Например, в США она составляет 5 центов за киловатт-час при средней скорости ветра 7 м/с и 3 цента при скорости ветра 9 м/с. Это меньше себестоимости электричества, производимого на ТЭС (в тех же США — 4,5—6 центов за киловатт-час). Однако перед ветроэнергетикой стоят еще и другие проблемы неэкономического характера. Главный ее недостаток — непостоянство. Ветер, как известно, то дует, то нет. И дует отнюдь не равномерно: то слабо, то сильно, то порывами. Получается, что сегодня генератор выдает одну мощность, завтра — другую, а послезавтра ветер затих и электричество вовсе пропало. Поэтому если ветряк обслуживает какой-то конкретный объект, к нему приходится добавлять целый комплекс аппаратуры. Во-первых — инвертор, который преобразует полученную энергию в ток промышленного качества (для России — 220 В, 50 Гц). Во-вторых — батарею аккумуляторов для выравнивания мощности. В-третьих — резервный дизель-генератор на случай длительного безветрия. Добавление всех этих агрегатов, которые значительную часть времени будут простаивать, увеличивает себестоимость производимой энергии в 2—3 раза. Поэтому лучший выход — подключение ветрогенераторов к единой энергетической системе. Тогда нехватка электричества от одного ветрогенератора будет компенсироваться избытком от другого, а в случае обширного штиля — усиленной работой прочих участников процесса энергопроизводства.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.