Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год Страница 23

Тут можно читать бесплатно Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год. Жанр: Разная литература / Периодические издания, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год

Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год» бесплатно полную версию:

Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год читать онлайн бесплатно

Вокруг Света - Журнал «Вокруг Света» №12 за 2009 год - читать книгу онлайн бесплатно, автор Вокруг Света

Любознательный врач стал расспрашивать коллег из других тюрем и вскоре выяснил странную картину: в образцовых тюрьмах, где заключенных кормили как положено очищенным (шлифованным) рисом, заболеваемость берибери была в 300 раз выше, чем там, где начальство из экономии скармливало узникам рис, недоочищенный от шелухи. Эйкман настоял на том, чтобы заболевших кормили нешлифованным рисом, и это их действительно спасало.

В 1896 году Эйкман послал статью в один из голландских научных журналов, где описал свои наблюдения, предположив, что процедура очистки каким-то образом делает рис токсичным. В тот момент статья осталась практически незамеченной (в то время причины массовых заболеваний было принято связывать с микроорганизмами), но несколько лет спустя она попалась на глаза польскому физиологу Казимиру Функу и очень заинтересовала его. Поставив  соответствующие опыты на голубях, Функ подтвердил открытые Эйкманом факты, но не согласился с их объяснением. Он предположил, что очистка не придает рису ядовитость, а, наоборот, лишает его какого-то содержащегося в шелухе вещества, и задался целью его выделить. К тому времени химия уже шагнула вперед, и в 1911 году Функ держал в руках чистые кристаллы некоего органического соединения. Добавление ничтожных доз его к шлифованному рису предотвращало развитие у голубей симптомов, сходных с бери-бери, и исцеляло уже заболевших птиц.

Функ даже попытался определить химическое строение этого вещества. Полностью сделать это ему не удалось, но он установил, что в состав спасительной молекулы входит аминогруппа (-NH2). Это и дало ему основание назвать выделенное им соединение витамином, то есть «амином жизни». С легкой руки Функа витаминами стали называть все вещества, играющие подобную роль в организме, тем более что в 1920—1930-х годах их начали открывать и идентифицировать одно за другим. Довольно быстро выяснилось, что химическая природа их абсолютно разная и далеко не все из них содержат аминогруппы, но «незаконное» название уже прижилось. Вещество же, открытое Функом, сегодня известно нам как витамин В1, или тиамин.

Скромные, но незаменимые

Сегодня к витаминам относят около двух десятков различных веществ. Около — потому что четких и однозначных критериев отнесения того или иного вещества к витаминам нет. Обычно причисление того или иного соединения к витаминам основано на трех признаках:

[?] это вещество необходимо для нормальной работы человеческого организма;

• оно нужно в очень малых количествах;

• сам организм не может его вырабатывать, а должен получать его с пищей. 

Последние два критерия довольно растяжимы и, во всяком случае, неоднозначны. «Малые количества» могут различаться в десятки тысяч раз: оптимальная суточная доза одних витаминов измеряется микрограммами, а других — десятками миллиграммов. Невозможность синтеза витаминов в самом организме тоже нуждается в оговорках: например, витамин D успешно синтезируется в наших тканях (в основном в коже) под действием ультрафиолетового излучения. Уже знакомый нам витамин В1 синтезируется нашими «квартирантами» — бактериями кишечника (благодаря чему некоторые подопечные Эйкмана оставались здоровыми и на диете из шлифованного риса). Однако количество производимого внутри нас тиамина сильно различается у разных людей и в разных условиях и в большинстве случаев не дотягивает до оптимального уровня. Наконец, почти все витамины могут подвергаться в организме ограниченным модификациям. Многие из них, кстати, поступают в него в виде так называемых предшественников или провитаминов — близких по строению веществ, которые уже в тканях доводятся до кондиции специальными ферментами. В свете всего этого последний критерий надо понимать так: витамин — это вещество, которое организм не может производить в необходимых количествах без помощи тех или иных внешних факторов.

Обычно витамины делят на две большие группы: жирорастворимые (A, D, E и K) и водорастворимые (все остальные). Большого химического смысла это деление не имеет (каждая из групп объединяет очень разнородные вещества), но физиологически оно оправдано, так как отражает различия в поведении этих веществ в нашем теле. В частности, жирорастворимые витамины могут запасаться в значительных количествах в жировой ткани, что и позволяет человеку, хорошо загоревшему во время отпуска, весь год потом не думать о дефиците витамина D. А вот «наесться впрок» водорастворимых витаминов невозможно: они нигде не запасаются, и любые их количества быстро выводятся из организма.

Кристаллы никотинамида — одной из форм витамина РР. Дефицит этого вещества в организме вызывает пел лагру — заболевание, проявляющееся в форме трех «Д»: дерматита, диареи и депрессии. Фото: SPL/EAST NEWS

Функции витаминов в нашем теле почти столь же разнообразны, как и их химическая природа. Самая популярная среди них биохимическая роль — коферменты. Так называют небольшие органические молекулы небелковой природы, связывающиеся с ферментами и служащие им активным центром (или его частью). Без кофермента соответствующий фермент просто не может выполнять свои функции, что и объясняет, каким образом ничтожное его количество оказывается жизненно необходимым для всего организма. Именно такова роль в организме витаминов группы В.

В роли коферментов выступают и другие витамины: например РР (никотиновая кислота) — кофермент для целого ряда окислительно-восстановительных реакций, витамин К — кофермент микросомальных ферментов печени, доводящих до ума кровяные белки, обеспечивающие реакцию свертывания.

Однако это не единственная «профессия» витаминов. Например, витамин Е (токоферол) защищает от окисления жиры, входящие в состав клеточных мембран, принимая на себя удар активных форм кислорода. Всем известная  аскорбиновая кислота (витамин С) — тоже антиоксидант, но на него возложена деликатная функция: возвращать в рабочее состояние окислившиеся ионы металлов, также входящие в состав активных центров многих ферментов. Витамин D (кальцитриол) — основа гормона, регулирующего всасывание в кишечнике кальция и фосфат-иона. Наконец, витамин А (ретинол), связываясь с белком опсином, превращает его в зрительный пигмент родопсин — ту самую молекулу, которая в светочувствительных клетках сетчатки захватывает фотон, приводя в действие весь молекулярный механизм зрения. Понятно, почему нехватка витамина А проявляется снижением чувствительности зрения и прежде всего неспособностью видеть при слабом освещении («куриной слепотой»). Впрочем, как и у большинства витаминов, это не единственная функция ретинола: он входит в состав клеточных мембран, каким-то образом участвует в регуляции роста и репродуктивной функции и т. д. Это не уникальная особенность именно витаминов: эволюция вообще любит использовать одни и те же низкомолекулярные «детали» в самых разных ролях и для самых разных целей.

Труднее понять, почему та же самая эволюция поставила нас в зависимость от импорта именно этого набора веществ. В нашем организме постоянно присутствует бессчетное множество относительно простых соединений, служащих коферментами, гормонами, пигментами и т. п. Абсолютное большинство их синтезируется самим организмом. Например, кальциферол по своему строению принадлежит к группе стероидов. Эти вещества широко представлены в нашем теле, многие из них играют роль гормонов, и все они успешно производятся из более простых и массовых веществ (хотя и весьма многоступенчато) или одни из других. Все, кроме кальциферола, которому для этого необходим ультрафиолет.

Можно даже сказать, что неспособность синтезировать тот или иной витамин — это общевидовая генетическая болезнь человечества. Впрочем, неспособность синтезировать витамин С характерна и для всего отряда приматов (в то время как, например, мыши и крысы легко синтезируют аскорбиновую кислоту из обычной глюкозы, и для них она не является витамином). А способности к синтезу витамина А лишены вообще все позвоночные.

Трудно сказать, случайно ли закрепились эти генетические дефекты, или же гены, управлявшие синтезом этих соединений, понадобились эволюции для чего-то другого. Но уж коли так сложилось, витамины должны бесперебойно поступать в организм с пищей. Откуда же нам их брать в нужных количествах?

Из ненадежных источников

Большинство образованных людей видят главный источник витаминов в свежих овощах и фруктах. Впрочем, в большинстве случаев слово «овощи» — не более чем дань привычному словосочетанию: овощи вообще занимают довольно скромное место в пищевом рационе, а в сыром виде их употребляют и вовсе редко, причем, как правило, в сезон — примерно с середины лета до середины осени. Исключение составляют разве  что продвинутые приверженцы здорового образа жизни, питающиеся сырыми овощами (причем порой довольно непривычными — сырой свеклой или проростками фасоли) круглый год. Но они настолько немногочисленны, что на статистике потребления их выбор практически не сказывается.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.