Журнал «Юный техник» - Юный техник, 2000 № 01 Страница 5

Тут можно читать бесплатно Журнал «Юный техник» - Юный техник, 2000 № 01. Жанр: Разная литература / Периодические издания, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Журнал «Юный техник» - Юный техник, 2000 № 01

Журнал «Юный техник» - Юный техник, 2000 № 01 краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Журнал «Юный техник» - Юный техник, 2000 № 01» бесплатно полную версию:
Популярный детский и юношеский журнал.

Журнал «Юный техник» - Юный техник, 2000 № 01 читать онлайн бесплатно

Журнал «Юный техник» - Юный техник, 2000 № 01 - читать книгу онлайн бесплатно, автор Журнал «Юный техник»

Теоретически изготовление оптической памяти на полупроводниках не должно представлять трудности.

Энергии электронов в полупроводниках соответствуют две широкие полосы. Большая их часть находится в валентной полосе, где они привязаны к определенным атомам. Однако стоит им сообщить достаточно энергии для перемещения на полосу проводимости, как они освобождаются для движения, оставляя при этом за собой пустоты («дырки»), действующие как положительно заряженные частицы.

Так что если атаковать полупроводник фотонами соответствующей энергии, они будут поглощены и оставят за собой пары электронов и пустот, каждая из которых сможет стать своеобразным «аккумулятором» света.

Подобные устройства широко применяются в цифровых камерах, где производят перевод электрического сигнала в световой и обратно. Но конструирование оптической памяти, способной улавливать, удерживать и высвобождать свет, — задача неимоверной трудности. Главная проблемаздесь в том, как добиться разделения электронов и положительных частиц и притом сохранить. Такое разделение на расстоянии, когда они смогут воссоединиться, высвобождая фотоны соответствующей длины волны. То есть, говоря проще, по первому же требованию воссоздавая первичный световой сигнал.

Дело осложняется тем, что одни полупроводники не лучшим образом обеспечивают разделение, другие — воссоединение электронов и положительных частиц. Хотя ученые хотели бы получить оба свойства в одном полупроводнике.

Для преодоления препятствия ученые обратились к звуку. Их метод управления потоком электронов осуществляется за счет поверхностных акустических волн, распределяемых по поверхности кристалла примерно так же, как рябь распространяется по воде.

Создание таких волн — дело нехитрое. Здесь применено воздействие переменного электрического напряжения на пьезоэлектрический материал. Создаваемое волнами электрическое поле нарушает обычный режим проводимости полупроводников — электроны движутся, подчиняясь воздействию частоты. Когда пары проходят через волновые пики и впадины, они разделяются таким образом, что электроны движутся в направлении верхних точек волн, а положительные частицы — в направлении нижних. А как только они разделились, то уже не смогут сами воссоединиться и остаются в ловушке среды поверхностных акустических волн. Это — как при серфинге, когда спортсмен не может покинуть зоны прибоя.

В 1997 году ученики Виксфорта во главе со студентом Карстеном Рокке объявили о создании исключительно малого по своим размерам пьезоэлектрического «сэндвича», составленного из слоев индия и полупроводников на основе галлия. Когда с помощью высокочастотного электрического поля в таком «сэндвиче» была создана поверхностная акустическая волна, вспышка лазера вызвала в жизни пары электронов и положительных частиц, которые в этом случае были надежно разведены с помощью поля.

Таким образом Рокке удалось продержать накопленную энергию несколько микросекунд, что в 1000 раз продолжительнее естественной жизни электронов и «дырок».

Схема накопления электроном энергии и испускания ее в виде света:

1 — электрическое поле; 2 — область полупроводника, в котором образовалась «дырка»; 3 — «дырка»; 4 — образование «дырки» под воздействием света; 5 — освободившийся электрон переходит в другую энергетическую зону; 6 — освободившийся электрон спустя некоторое время скатывается в потенциальную «яму»; 7 — зона, где электроны и «дырки» не могут рекомбинировать.

Схема оптической линии задержки:

1 — падающие лучи света; 2 — электроды управления; 3 — выходящие лучи света; 4 — положение электронов; 5 — подложка.

И это только начало. Время задержки может быть еще большим, если использовать «сэндвич» больших размеров.

Комментируя этот опыт, Рокке подчеркнул, что теперь его команда способна на большее, чем простое удержание энергии фотона. Они могут отдавать команды, когда и в каком месте эта энергия должна высвободиться.

Технически это означает, что исследователи просто-напросто сводят на нет пики и впадины электрического поля. Причем могут добиться этого двояким способом. Либо путем размещения тонкого металлического электрода в верхней точке кристалла, либо путем направления одной звуковой волны навстречу другой с помощью поля противоположной фазы.

Когда электроны и положительные частицы воссоединяются, они производят вспышку фотонов примерно такой же энергии, какая имелась первоначально.

Словом, получается, что Рокке и его коллеги словно бы заключили свет в ловушку примерно так же, как сказочного джинна, помещают в лампу или бутылку.

Правда, имеет смысл указать на особенности опыта. Все описанные эксперименты начинали проводить при температуре жидкого гелия — 4 градуса выше абсолютного нуля, что, разумеется, не так уж удобно для ежедневного применения. Сегодня команда Рокке тот же самый эффект получает при температуре жидкого азота. Следующим этапом, как полагают, будет попытка создания оптической линии задержки, работающей при комнатной температуре.

Экспериментаторы считают, что гибкость в работе созданного устройства позволяет не только удерживать на какое-то время свет, но и выполнять такие операции, как соединение ряда входящих оптических сигналов в один либо разделение их в обратном порядке. Виксфорт открыл, что может даже изменять длину волны воспроизведенного света путем простого сжатия полупроводника. Исследователи смогут использовать эту особенность, когда потребуется закодировать какую-то дополнительную информацию.

Другое практическое использование устройств может состоять в оптическом распознании по образцам, в фильтровании, накоплении, восстановлении изображения. Причем можно будет использовать не только свет. Виксфорт предвкушает загрузку и чтение каждой из ячеек памяти благодаря использованию пар «электроны — дырки», которые переносятся поверхностными акустическими волнами. Заложенная про запас информация может в этом случае передаваться даже от одной ячейки в следующую для использования.

В перспективе, используя лазерный свет вместо проводов и параллелизм обработки данных, исследователи намерены сконструировать оптический компьютер, каких еще не было. «Это будет настоящий пожиратель цифровых данных», — охарактеризовал его профессор Виксфорт.

В. ДУБИНСКИЙ

Художник Ю. САРАФАНОВ

Коттедж из бумаги

Строительство — одна из самых консервативных отраслей человеческой деятельности. Бетон, камень, кирпич, дерево — все эти строительные материалы известны человеку еще с глубокой древности. Ну а что нового готовы предложить современные специалисты на пороге нового тысячелетия?

Этим вопросом задался наш специальный корреспондент Виктор ЧЕТВЕРГОВ, посетив Международную специализированную выставку «Строительные материалы и технологии-99».

Помните, в сказке Заяц построил себе избушку лубяную, а Лиса ледяную?

И нельзя сказать, что Патрикеевна поступила совсем уж безграмотно. Из льда тоже можно строить долговременные и прочные сооружения, надо только умело ограждать их от прямых солнечных лучей. А вот Заяц и впрямь новатор. Луб — почти что бумага. А строить бумажные дома додумались только сегодня. И подтолкнула к этому архитекторов и строителей экологическая необходимость.

Судите сами.

В мире сегодня выпускается огромное количество газет, журналов и прочей полиграфической продукции. Большая часть изданий после прочтения заканчивает свое существование на мусорной свалке. Разве это по-хозяйски?

Правда, неоднократно предпринимались попытки повторного использования макулатуры. Однако бумага из нее получается низкосортная, годится разве что для обертки и производства упаковочного картона.

И того и другого требуется не так уж много, поэтому до последнего времени значительная часть макулатуры поступала в мусоросжигательные печи, заполняя округу копотью и дымом. Иной выход предложил швейцарский дизайнер и архитектор, а заодно и изобретатель Фреди Изеле. В 1996 году он основал в ФРГ фирму, которая занимается конструированием и производством из бумаги… домов.

Технология крайне проста и базируется на идее всем известного детского «конструктора».

— Для сборки домов на заводе производятся универсальные элементы, снабженные креплениями, — рассказывает Изеле. — Из таких элементов можно даже вручную, без применения какой-либо техники, используя лишь шурупы и клей, собрать полноценный дом всего за 4 рабочих дня. После отделки такой коттедж по внешнему виду ничем не будет отличаться от своих собратьев, построенных из традиционных материалов.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.