Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли Страница 13

Тут можно читать бесплатно Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли. Жанр: Разная литература / Зарубежная образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли

Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли» бесплатно полную версию:

Гвидо Тонелли – один из авторитетнейших современных физиков-экспериментаторов, профессор Университета Пизы, сотрудник Европейской организации по ядерным исследованиям, автор множества статей и нескольких научно-популярных книг. В “Тончайшем несовершенстве, что порождает всё” он рассказывает об открытии одной из самых загадочных элементарных частиц – бозона Хиггса. Тонелли был непосредственным участником описываемых событий, он работал на Большом адронном коллайдере, являлся официальным представителем эксперимента по поиску бозона Хиггса, и потому его рассказ о том, как совершалось самое важное за последние десятилетия открытие в физике элементарных частиц, получился очень живым и личным.

Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли читать онлайн бесплатно

Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли - читать книгу онлайн бесплатно, автор Гвидо Тонелли

лишь кажется слабой. Ослепленные здравым смыслом, мы остаемся в плену предрассудка, согласно которому Вселенная эволюционирует в пространстве четырех измерений: три из них собственно пространственные – длина, ширина и глубина, а одно – временнóе. Но если мы, напротив, предположим, что размерность больше (5, 6 или 10), добавив измерения, которых мы просто не замечаем, то картина радикально изменится.

Вот и разрешение загадки: гравитация кажется нам слабой, потому что мы всегда наблюдали только ее бледную проекцию в знакомом нам четырехмерном мире. Но в пространстве бóльшей размерности это взаимодействие значительно интенсивнее, чем мы думаем! Учитывая скрытые измерения, мы обнаружим, что гравитационная константа связи становится нормальной и при росте энергии гравитация сможет объединиться со всеми остальными взаимодействиями. Но где же скрываются эти экстраизмерения? В первые мгновения жизни Вселенной огромная энергия позволяет удерживать их открытыми, а при последующем охлаждении они быстро сворачиваются, словно замыкаясь сами на себя, и становятся незаметными. Аномальная же слабость гравитации остается с нами – как гигантская диспропорциональная деталь, словно подсказывающая, что мы не должны довольствоваться видимостью.

Самое удивительное заключается в том, что если дополнительные измерения существуют, то их можно обнаружить с помощью ускорителей элементарных частиц, в частности – LHC. Заставляя сталкиваться протоны высоких энергий, мы можем поколебать те пределы, в которых вот уже миллиарды лет протекает незаметная и молчаливая жизнь скрытых измерений. Различные варианты теории предсказывают существование сверхмассивных элементарных частиц – их свойства практически такие же, как и у других частиц, описываемых Стандартной моделью, только весят они в десятки раз больше, – или даже новые и совершенно экзотические состояния материи, для которых гравитационное взаимодействие значительно сильнее, чем обычно. То есть возможно образование агломератов субатомных частиц, удерживаемых вместе не электромагнитным, как электроны в атоме, и не сильным, как кварки в ядре, а гравитационным взаимодействием.

На очень маленьких расстояниях гравитационное притяжение может оказаться настолько сильным, что (теоретически) способно привести к рождению микроскопических черных дыр. У них нет ничего общего с космическими черными дырами – гигантскими небесными телами в центрах многих галактик, настолько массивными, что они оказываются невидимыми, так как даже свет не может оторваться от них. Если такие микроскопические черные дыры действительно могут образовываться, то они должны быть безобидными неустойчивыми частицами, существующими очень короткое время и оставляющими по себе в качестве доказательства своего существования микроскопический фейерверк из десятка элементарных частиц, который можно зарегистрировать ультрачувствительными детекторами, окружающими зону реакции. Поскольку до сих пор ни в одном эксперименте не было замечено ни следов сверхмассивных частиц, ни микроскопических черных дыр, то мы можем оценить сверху ничтожные пространственные размеры все еще скрывающихся дополнительных измерений. Короче говоря, вопрос остается открытым, и любой день может оказаться для нас счастливым. Момент, когда подтвердится какая‑то определенная теория дополнительных измерений, не только впишет этот день в анналы истории науки, но и откроет новую главу в истории человечества. Какая захватывающая смена перспективы, меняющая всю картину мира! Попробуйте‑ка, к примеру, мысленно вписать себя в десятимерный мир или хотя бы попросту его представить. Либо задайтесь вопросами о том, что за удивительные возможности принесет нам систематическое исследование этой новой и доселе неизвестной стороны Вселенной.

В поисках священного Грааля

Итак, начав с обсуждения Стандартной модели, мы пришли к главным вопросам современной физики. Темная материя, инфляция, темная энергия, объединение взаимодействий и особая роль гравитации – вот те проблемы, для решения которых понадобится, по всей вероятности, совершить концептуальную революцию в физике. Рано или поздно мы обнаружим нечто такое, что навсегда изменит наши представления об окружающем мире, а Стандартная модель станет частным случаем значительно более общей теории в пределе низких энергий. Такое уже случалось в прошлом и наверняка случится снова.

Но появление новых проблем не должно было отвлекать нас от решения проблемы старой. Требовалось либо обнаружить бозон Хиггса и доказать, что эта частица действительно существует, либо дать какое‑то другое объяснение механизму спонтанного нарушения симметрии электрослабого взаимодействия. Задача оказалась не из легких. Охота за бозоном началась давно, однако пока Стандартная модель шла в остальном от успеха к успеху, на этом пути копились все новые и новые неудачи. Хотя Стандартная модель переживала годы своего наивысшего триумфа, эта частица по‑прежнему оставалась неуловимой – а ведь на ее существовании держалась вся теоретическая конструкция.

Но вот на рубеже 90‑х годов в игру вступило новое поколение молодых физиков, которые решили попробовать свои силы в деле, до сих пор никому не удававшемся. То есть или обнаружить проклятый бозон, или показать, что механизм Браута – Англера – Хиггса не работает и нужна другая теория.

Предложенные ими для решения проблемы устройства были такого размера и с такими характеристиками, что поначалу их приняли за сумасшедших. Большинства технологий, которые они намеревались использовать, попросту не существовало, запрашиваемые материалы были делом далекого будущего, а требуемые условия проведения экспериментов казались безумными.

Мечтой физиков этого поколения стало сооружение небывалого ускорителя, окруженного небывалыми же детекторами. Они хотели перекрыть для бозона Хиггса все возможные лазейки, систематически обследуя любой закоулок, где он мог оказаться.

Но в своих планах молодые ученые шли еще дальше. Одновременно с поисками бозона они собирались отыскать первые признаки Новой физики: признаки новых частиц, чье существование следовало из суперсимметрии, или микроскопических черных дыр, появившихся в теории экстраизмерений. И новое устройство должно было им в этом помочь. Исследователи хотели основательно изучить все русло реки современной физики, один за другим переворачивая камешки на ее дне, чтобы не упустить даже самую мелкую рыбешку.

Готовиться к сюрпризам всегда трудно. Могло оказаться, что у бозона Хиггса совсем другие свойства, чем следует из Стандартной модели. Надо было настраиваться на то, чтобы регистрировать самые ничтожные аномалии, ибо именно в них могли прятаться признаки Новой физики. Бозонов Хиггса могло оказаться целое семейство, а могло случиться и так, что роль искомого бозона играет какой‑то совсем другой актер. Нам надо было приготовиться к встрече с частицами куда более экстравагантными, чем когда‑либо воображал человеческий ум, – может, стабильных, способных неделю дремать в аппаратах ускорителя, чтобы потом внезапно распасться сразу после загрузки данных, а может, призрачных невидимых частиц темной материи, которые нельзя зарегистрировать напрямую.

Теперь я приступаю к рассказу об истории и приключениях LHC, Большого адронного коллайдера.

Глава 3

Вы окончательно рехнулись!

И нобелиаты порой ошибаются

Кафетерий ЦЕРН,

конец какого‑то весеннего дня 1995 года

Я только что вышел с заседания LHCC, Комитета

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.