Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха Страница 6
- Категория: Проза / Современная проза
- Автор: Апостолос Доксиадис
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 30
- Добавлено: 2018-12-08 18:21:59
Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха» бесплатно полную версию:Это – роман, переведенный на все основные языки мира и имевший огромный успех более чем в двадцати странах.Это – новая страница в творчестве Апостолоса Доксиадиса, блестяще-интеллектуального представителя школы "литературного космополитизма", доселе известной читателю лишь по произведениям Кадзуо Ишигуро и Милана Кундеры.История чудаковатого дядюшки, всю свою жизнь положившего на решение принципиально неразрешимой научной проблемы, под пером Доксиадиса превращается в стильный "РОМАН ИДЕЙ"…Это – "Дядя Петрос и проблема Гольдбаха". Книга, читать которую БЕСКОНЕЧНО ИНТЕРЕСНО…
Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха читать онлайн бесплатно
Дядя Петрос, продемонстрировав доказательство Евклида бесконечности множества простых чисел, сказал, что дал мне единственно необходимый для моей работы инструмент. И все же я не мог продвинуться вперед.
К концу сентября, за несколько дней до начала моего последнего в школе учебного года, я снова оказался в Экали, мрачный и сломленный. Поскольку телефона у дяди Петроса не было, мне предстояло сообщить ему весть лицом к лицу.
– Ну? – спросил он, как только мы сели и я гордо отказался от его вишневого напитка. – Ты решил задачу?
– Нет, – ответил я. – Честно говоря, не решил. Меньше всего мне теперь хотелось прослеживать путь своих ошибок или чтобы их анализировал за меня дядя Петрос. Более того, мне абсолютно неинтересно было узнать решение, доказательство утверждения. Хотелось только одного: забыть все, хоть как-то связанное с числами – четными или нечетными, не говоря уже о простых.
Но дядя Петрос не собирался отпускать меня так легко.
– Ну что ж, – сказал он. – Ты помнишь наш уговор?
Я понял, что ему нужно официально закрепить свою победу (почему-то я был уверен, что он именно так рассматривает мой провал), и мне это было очень неприятно. Но я не собирался делать его победу еще слаще, показывая свои задетые чувства.
– Конечно, помню, дядя, как и ты. Мы договорились, что я не буду пытаться стать математиком, если не решу задачу…
– Нет! – прервал он меня с неожиданной горячностью. – В договоре было сказано, что если ты не решишь задачу, ты дашь обещание никогда не быть математиком!
– Именно так, – подтвердил я хмуро. – И поскольку задачу я не решил…
– Ты сейчас дашь обещание, – прервал дядя, заканчивая предложение и снова подчеркивая слова так, будто его (или скорее моя) жизнь от этого зависела.
– Конечно, – сказал я, заставляя себя не быть невежливым. – Если это тебе приятно, я даю обещание.
Он заговорил суровым и даже свирепым голосом:
– Дело не в том, молодой человек, что мне приятно или неприятно, дело в соблюдении соглашения. Ты поклянешься держаться подальше от математики!
Моя досада тут же развернулась в полноценную ненависть.
– Хорошо, дядя, – холодно сказал я. – Я клянусь держаться подальше от математики. Теперь ты доволен?
Я встал, но он грозно поднял руку:
– Не так быстро!
Он резким движением выхватил из кармана лист бумаги, развернул и сунул мне под нос. Вот что там было:
Я, нижеподписавшийся, находящийся в здравом уме и твердой памяти, не выдержав экзамена на способности в высшей математике и в соответствии с соглашением, заключенным мной с моим дядей, Петросом Папахристосом, никогда не буду добиваться диплома математика в каком-либо высшем учебном заведении, равно как не буду и каким-либо иным образом стремиться к профессиональной карьере математика.
Я уставился на дядю.
– Подпиши! – приказал он.
– Какой в этом толк?! – заревел я, уже не пытаясь скрывать свои чувства.
– Подпиши, – сказал дядя неколебимо. – Уговор есть уговор!
Я оставил без внимания его руку, державшую в воздухе авторучку, вытащил из кармана шариковую, вбил свою подпись в этот лист, и не успел дядя сказать хоть слово – как я бросил ему эту бумагу и выбежал прочь, к калитке.
– Погоди! – крикнул он мне вслед, но я уже был за оградой.
Я бежал, бежал, бежал, пока его крики не затихли вдали, а тогда остановился, запыхавшийся, согнулся пополам и заплакал, как маленький, слезами гнева, досады и унижения.
Весь последний школьный год я не видел дядю Петроса и не говорил с ним, а в июне придумал какой-то предлог, чтобы во время традиционной семейной поездки в Экали остаться дома.
Мой опыт предыдущего лета дал именно тот результат, который дядя Петрос, несомненно, предвидел. Независимо от любых обязательств выполнить свою часть «уговора», я начисто утратил желание становиться математиком. К счастью, этот побочный эффект моей неудачи не дошел до крайностей, я не отверг науки полностью и продолжал успевать в школе по всем предметам. В результате я был принят в один из лучших университетов в Соединенных Штатах. При регистрации я заявил главной областью своих интересов экономику, и этого выбора держался до третьего курса [8]. Если не считать обязательных курсов элементарного анализа и линейной алгебры (между прочим, высшие оценки там и там), я за первые два года никакой математики не изучал.
Успех (по крайней мере первоначальный) интриги дяди Петроса был основан на применении к моей жизни абсолютного детерминизма математики. Конечно, он шел на риск, но риск хорошо рассчитанный: вероятность того, что я в университетском курсе элементарной математики узнаю о том, что это была за задача, была пренебрежимо мала. Она (задача) относится к теории чисел, которую читают лишь немногим, избравшим своей специальностью математику. И потому вполне естественно было предположить, что, пока я держу обещание, я закончу университетский курс (и жизнь, насколько можно судить), не узнав правды.
Но реальность не так предопределена, как математика, и все вышло иначе.
В первый день моего третьего года мне сообщили, что Судьба (потому что кто же еще так умеет подстраивать совпадения?) назначила мне в соседи по комнате Сэмми Эпштейна – тщедушного паренька из Бруклина, известного среди студентов как феноменальный математический талант. Сэмми должен был уже в этом году получить диплом в возрасте семнадцати лет, и хотя он формально считался еще студентом, все курсы, которые он слушал, были для аспирантов. Он даже начал работать над диссертацией по алгебраической топологии.
Я в это время полагал, что раны от моего краткого периода математических надежд уже затянулись, и мне стало приятно и даже интересно, когда я узнал, кто будет моим соседом. В первый вечер, когда мы сидели в университетской столовой для лучшего знакомства, я небрежно сказал:
– Поскольку ты, Сэмми, математический гений, я уверен, что ты легко сможешь доказать вот что: каждое четное число, большее 2, представимо в виде суммы двух простых.
Он разразился хохотом.
– Если бы я мог доказать это, друг мой, я бы тут с тобой не сидел, а уже был бы профессором. Может, даже Филдсовскую медаль получил бы – это для математиков как Нобелевская!
Он еще не договорил, как мне уже внезапно открылась страшная истина. Сэмми подтвердил ее следующими словами:
– Утверждение, которое ты сейчас сформулировал, – это проблема Гольдбаха, одна из самых трудных нерешенных задач во всей математике!
Моя реакция состояла из Четырех Стадий Горя, называемых (если я правильно помню, чему меня учили в элементарном курсе психологии) Отторжением, Гневом, Подавленностью и Принятием. Первая оказалась самой краткосрочной.
– Это… Этого не может быть! – выговорил я, как только Сэмми произнес эти страшные слова. Я надеялся, что ослышался.
– Как это – «не может быть»? Может, потому что так оно и есть! Проблема Гольдбаха, или гипотеза Гольдбаха – потому что это всего лишь гипотеза, которую никто еще не доказал, – состоит в том, что любое четное число есть сумма двух простых. Впервые она была сформулирована математиком по фамилии Гольдбах в письме к Эйлеру [9]. Ее проверили для неимоверного количества четных чисел, и она выполняется, но общего доказательства до сих пор никто не смог дать.
Следующих слов Сэмми я уже не слышал, потому что вошел в стадию Гнева.
– Старая сволочь! Сукин сын! – заорал я по-гречески. – Чтоб его черти взяли! Чтоб ему в аду гореть!
Мой новый сосед, никак не думавший, чтобы какая-нибудь гипотеза теории чисел могла вызвать такой бешеный взрыв средиземноморских страстей, попросил меня объяснить, что случилось. Но я был не в том состоянии, чтобы что-нибудь объяснять.
Мне было девятнадцать лет, и до тех пор я вел очень упорядоченную жизнь. Если не считать одну рюмку виски с отцом, чтобы отпраздновать, «как подобает взрослым мужчинам», мое окончание школы, и обязательный глоток вина на родственных свадьбах, я не знал вкуса алкоголя. Следовательно, огромное количество, поглощенное в этот вечер (я начал с пива, перешел на бурбон и закончил ромом) необходимо умножить на достаточно большой коэффициент n, чтобы правильно оценить эффект.
На третьем или четвертом стакане пива, когда я еще что-то соображал, я написал письмо дяде Петросу. Потом, войдя в фазу фаталистического ожидания неминуемой смерти, но до того, как полностью отключился, я передал это письмо бармену вместе с остатками стипендии, попросив выполнить мое последнее желание и отправить письмо. Частичная амнезия, затемняющая подробности этого вечера, навеки скрыла точное содержание письма. (У меня не хватило духу разыскивать его, когда я через много лет унаследовал архив дяди.) Судя по обрывкам памяти, нет такого ругательства, вульгарного или оскорбительного выражения, проклятия или злобного пожелания, которого не было бы в этом письме. Смысл состоял в том, что дядя разрушил мою жизнь, а потому я, когда вернусь в Грецию, его убью, но только после долгих пыток самыми извращенными способами, которые только может придумать человеческое воображение.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.