БСЭ БСЭ - Большая Советская Энциклопедия (КВ) Страница 13
- Категория: Справочная литература / Энциклопедии
- Автор: БСЭ БСЭ
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 58
- Добавлено: 2019-05-22 10:42:48
БСЭ БСЭ - Большая Советская Энциклопедия (КВ) краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «БСЭ БСЭ - Большая Советская Энциклопедия (КВ)» бесплатно полную версию:БСЭ БСЭ - Большая Советская Энциклопедия (КВ) читать онлайн бесплатно
Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах К. м. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Т. о., К. м. становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.
Место квантовой механики среди других наук о движении. В начале 20 в. выяснилось, что классическая механика И. Ньютона имеет ограниченную область применимости и нуждается в обобщении. Во-первых, она не применима при больших скоростях движения тел — скоростях, сравнимых со скоростью света. Здесь её заменила релятивистская механика, построенная на основе специальной теории относительности А. Эйнштейна (см. Относительности теория). Релятивистская механика включает в себя Ньютонову (нерелятивистскую) механику как частный случай. Ниже термин «классическая механика» будет объединять Ньютонову и релятивистскую механику.
Для классической механики в целом характерно описание частиц путём задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако опыт показал, что это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). В этом состоит второе ограничение применимости механики Ньютона. Более общее описание движения дает К. М., которая включает в себя как частный случай классическую механику. К. м., как и классическая, делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности. В статье изложены основы нерелятивистской К. м. (Однако некоторые общие положения относятся к К. м. в целом. Нерелятивистская К. м. (как и механика Ньютона для своей области применимости) — вполне законченная и логически непротиворечивая теория, способная в области своей компетентности количественно решать в принципе любую физическую задачу. Релятивистская К. м. не является в такой степени завершенной и свободной от противоречий теорией. Если в нерелятивистской области можно считать, что движение определяется силами, действующими (мгновенно) на расстоянии, то в релятивистской области это несправедливо. Поскольку, согласно теории относительности, взаимодействие передается (распространяется) с конечной скоростью, должен существовать физический агент, переносящий взаимодействие; таким агентом является поле. Трудности релятивистской теории — это трудности теории поля, с которыми встречается как релятивистская классическая механика, так и релятивистская К. м. В этой статье не будут рассматриваться вопросы релятивистской К. м., связанные с квантовой теорией поля.
Критерий применимости классической механики.
Соотношение между Ньютоновой и релятивистской механикой определяется существованием фундаментальной величины — предельной скорости распространения сигналов, равной скорости света с (с » 3×1010 см/сек). Если скорости тел (значительно меньше скорости света (т. е. u/c << 1, так что можно считать с бесконечно большой), то применима Ньютонова механика.
Соотношение между классической механикой и К. м. носит менее наглядный характер. Оно определяется существование другой универсальной мировой постоянной — постоянной Планка h. Постоянная h (называемая также квантом действия) имеет размерность действия (энергии, умноженной на время) и равно h = 6,662×10–27 эрг×сек. (В теории чаще используется величина h = h/2p = 1,0545919×10–27 эрг×сек, которую также называют постоянной Планка.) Формально критерий применимости классической механики заключается в следующем: если в условиях данной задачи физические величины размерности действия значительно больше h (так что h можно считать очень малой), применима классическая механика. Более подробно этот критерий будет разъяснен при изложении физических основ К. м.
История создания квантовой механики. В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классической теории электромагнитного поля (классической электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (дуализм света); вторая — с невозможностью объяснить на основе классических представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счете, к открытию законов К. м.
Впервые квантовые представления (в т. ч. квантовая постоянная h) были введены в физику в работе М. Планка (1900), посвященной теории теплового излучения (см. Планка закон излучения). Существовавшая к тому времени теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическое) равновесие между излучением и веществом не может быть достигнуто, т.к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классической теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определенными порциями энергии — квантами. Величина такого кванта энергии зависит от частоты света n и равна E = hn
От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в дух ее формах к 1927. Первая начинается с работы Эйнштейна (1905), в которой была дана теория фотоэффекта — явления вырывания светом электронов из вещества. В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями — квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету — что сам свет состоит из отдельных порций — световых квантов (которые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний n волны соотношением Планка E = hn
Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц — фотона и электрона (см. Комптона эффект). Кинематика такого столкновения определяется законами сохранения энергии и импульса, причем фотону наряду с энергией E = hn следует приписать импульс р = h/l = hn/c, где l — длина световой волны. Энергия и импульс фотона связаны соотношением E = cp, справедливым в релятивистской механике для частицы с нулевой массой.
Т. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц — фотонов. В этом проявляется дуализм света, его сложная корпускулярно-волновая природа. Дуализм содержится уже в формуле E = hn, не позволяющей выбрать какую-либо одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой — частота n является характеристикой волны. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других — корпускулярную. По существу разрешение этого противоречия и привело к созданию физических основ К. м.
В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 Н. Бором условиям квантования атомных орбит (см. ниже), выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от ее природы, следует поставить в соответствие волну, длина которой l связана с импульсом частицы р соотношением
Жалоба
Напишите нам, и мы в срочном порядке примем меры.