Анатолий Бернацкий - 100 великих тайн Вселенной Страница 15

Тут можно читать бесплатно Анатолий Бернацкий - 100 великих тайн Вселенной. Жанр: Справочная литература / Энциклопедии, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Анатолий Бернацкий - 100 великих тайн Вселенной

Анатолий Бернацкий - 100 великих тайн Вселенной краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Анатолий Бернацкий - 100 великих тайн Вселенной» бесплатно полную версию:
Вселенная — великая загадка бытия, манящая тайна познания — бесконечного преодоления границ неведомого. За первым шагом открываются новые горизонты. А за ними — новые тайны вечного, неисчерпаемого космоса.Как родилась наша Вселенная? Что было до Большого взрыва? Из чего состоит вещество Вселенной? Что такое черные дыры? Как происходит круговорот вещества во Вселенной? Где находится галактический центр? Существуют ли параллельные миры? Как рождаются звезды? Что такое квазары, пульсары и белые карлики? Об этом и многом другом рассказывает очередная книга серии.

Анатолий Бернацкий - 100 великих тайн Вселенной читать онлайн бесплатно

Анатолий Бернацкий - 100 великих тайн Вселенной - читать книгу онлайн бесплатно, автор Анатолий Бернацкий

Ведь звезда, чтобы превратиться в черную дыру, должна быть как минимум в 10 раз массивнее Солнца. В то время как масса нейтронной звезды больше солнечной всего в 1,5–3 раза. Вот в этом промежутке астрономы и вычислили ряд удивительных объектов.

Звезда Эта Киля и туманность Гоммункул

Поскольку отдельные нейтроны имеют значительно меньшие размеры, чем атомы, они в нейтронной звезде и легче прижимаются один к другому. Атомы же к такому уплотнению не способны.

Казалось бы, физический тупик, после которого никаких изменений в звезде не должно происходить. Однако теория говорит, что нейтроны при такой невероятной плотности не остаются целыми, а начинают распадаться на отдельные части, именуемые кварками. Их у нейтрона три — один верхний и два нижних. Так вот, кварки, не будучи стабильными частицами, могут в свою очередь превратиться в своих более тяжелых родственников — «странных кварков». Именно это «оливье» из разнообразных элементарных структур носит название «странной материи».

Так вот, если эта гипотетическая звезда имеет верхние и нижние кварки, она зовется кварковой, а если она содержит еще и большое количество s-кварков — самых легких среди этой группы частиц, — то ее называют странной звездой.

Таковы теоретические выводы ученых. Но существуют ли такие звезды в действительности? Сказать наверняка, опять же, никто не может.

И все же подвижки в этом направлении появились. Во-первых, теория позволяет нарисовать приблизительный «фоторобот» таких звезд. А это значит, что астрономы определенное представление об этих звездах все же имеют. И по «фотороботам» этих звезд могут искать их во Вселенной.

Эти поиски привели ученых к одной странной нейтронной звезде, которая находится на расстоянии в 150 световых лет от Земли. Странность ее в том, что она имеет всего 11 километров в поперечнике. Есть еще одна нейтронная звезда, которая демонстрирует другую необычность: она очень быстро охлаждается.

А поскольку диаметр первой и разница температур второй звезды не вкладываются в те параметры, которые характерны для нейтронных звезд, обе эти звезды и стали кандидатами в кварковые звезды. Впрочем, наделение этих звезд новым статусом носит пока теоретический характер, так как полных знаний о нейтронных звездах у астрофизиков пока нет. Поэтому и говорить о том, нейтронная это звезда или нет, довольно сложно.

И все же ученые уверены, что превращение нейтронной звезды в кварковую они смогут установить по той колоссальной энергии, которая выделится в ходе этого явления. Более того, существует гипотеза, что наиболее интенсивные гамма-всплески являются результатом появления кварковых звезд.

Человеческая мысль никогда не стоит на месте, а всегда стремится проникнуть в глубь процессов и явлений. Поэтому астрофизики попытались выяснить: а что же случится с кварковой материей, когда она настолько уплотнится, что отдельные частицы перестанут в ней существовать?

На этот счет существует две точки зрения. В соответствии с первой, кстати, наиболее популярной, гравитация приведет частицы в состояние бесконечной плотности, что послужит толчком к возникновению черной дыры.

А вот сторонники второй гипотезы считают, что кварки могут состоять из еще более простых частиц. В силу этого между кварковой звездой и черной дырой существует промежуточная структура, называемая «преонной звездой». Построена она из субатомных частиц — преонов, которые считаются самыми элементарными и практически неделимыми и в определенных комбинациях формирующими любой другой тип частиц.

Но существование преонных звезд противоречит Стандартной Модели Вселенной, которая пока достаточно полно объясняет, хотя и не без шероховатостей, ее природу. Поэтому преонная гипотеза особым успехом среди физиков не пользуется.

Все виды звездной материи, о которой до этого шел разговор, состоят из фермионов — семейства частиц, к которому принадлежат и электроны, и протоны, и нейтроны, и кварки. Но помимо этих элементарных кирпичиков материи, в природе, согласно теоретическим расчетам, существуют еще и бозоны — связующее звено, благодаря которому взаимодействуют элементарные фермионы.

Так вот, физики-теоретики предполагают, что бозоны вполне могут сформировать свой собственный тип материи. Поскольку такие частицы должны обладать малой массой и быть стабильными, они, объединившись, могут сформировать звезду.

И хотя это очень эфемерная гипотеза, тем не менее она тоже имеет своих приверженцев. Они предполагают, что такие звезды находятся в центре галактик. И действительно, астрофизикам известны несколько галактик с так называемыми активными галактическими ядрами, срединная область которых намного ярче теоретически рассчитанной. Именно там и могут скрываться бозонные звезды.

Предполагается, что появились они на ранних стадиях развития Вселенной. Это косвенно подтверждает тот факт, что большинство галактик с активными ядрами наблюдаются в отдаленных (следовательно, самых древних) частях космоса.

Таким образом, кроме нейтронных звезд и черных дыр, космос населяет еще много светящихся экзотических объектов, правда, большинство из которых существует только в теории. Вот астрофизикам и предстоит узнать: гипотетические или реальные такие звезды, как кварковые, преоновые или бозоновые.

В продолжение темы о невероятных звездах, наверное, не лишним будет сказать и о существовании во Вселенной… гигантского ускорителя частиц, своеобразного вселенского андронного коллайдера. Находится он на расстоянии приблизительно 7,5 тысячи световых лет от Земли. И образован он силами гравитации, которые возникают между двумя массивными звездами.

Одна из них — Эта Киля. Она считается крупнейшим из известных современной науке светил: ее масса более чем в 150 раз больше солнечной.

В этом «природном устройстве» находится своеобразная «ловушка для элементарных частиц», в которой гравитация разгоняет протоны до скоростей, при которых их энергия достигает показателя в 10 ТэВ, или 10 миллионов миллионов электронвольт. А это — почти в полтора раза больше, чем максимальный показатель, достигнутый на Большом андронном коллайдере, который, как известно, расположен недалеко от Женевы.

Помимо протонов, солнечные ветры звезды-гиганта несут также потоки ионов — электрически заряженных атомов. Когда разогнанные протоны сталкиваются друг с другом или с этими ионами, рождаются частицы, называемые пионами. Но они очень быстро разрушаются, выделяя при этом гамма-излучение. Открытие коллайдером звездной системы Эта Киля стало первым практическим подтверждением теории существования подобных гравитационных ловушек для протонов.

Парадокс: холодные звезды

Говоря о звездах, мы обычно подразумеваем под этим понятием раскаленные до невероятно высоких температур небесные тела. А температуры там и впрямь гигантские. Ведь даже поверхность ближайшей к нам звезды — Солнца с температурой, равной 6000 градусов, можно считать лишь слегка подогретой по сравнению с теми «факелами» Вселенной, температура которых достигает нескольких десятков и сотен тысяч градусов. К таким «разгоряченным» объектам относятся белые карлики с температурой 200 000 градусов.

В это трудно поверить, но, оказывается, есть звезды, которые во много раз холоднее Солнца. Это — так называемые коричневые карлики. К ним мы еще вернемся в 7 главе.

Одно время рекордсменом в этой температурной категории была звезда, которая в каталогах обозначена как CFBDS0059. Температура этой звезды по разным данным колеблется от 180 до 350 градусов Цельсия. А это для звезды почти то же самое, что для Земли Антарктида.

Коричневый карлик в созвездии Волопаса

Звезды со столь низкими температурами у астрономов получили наименование коричневых карликов. По сути, это особый класс небесных тел, занимающий промежуточное положение между звездами и планетами. Причем на ранних этапах своей эволюции, то есть в молодости, коричневые карлики являются звездами. Когда же «постареют», то переходят в группу планет типа Юпитера, то есть планет-гигантов.

Нередко специалисты называют коричневых карликов еще и «не случившимися звездами». Связано это с тем, что хотя в них и проходят термоядерные реакции, но энергию, уходящую на излучение, они компенсировать не могут и поэтому со временем остывают. А планетами их назвать нельзя уже по той причине, что они не имеют четкой морфологической структуры: в них нет ни ядра, ни мантии и господствуют конвекционные потоки. А так как подобное строение характерно для звезд, коричневые карлики и оказались в этой категории небесных тел.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.