БСЭ БСЭ - Большая Советская Энциклопедия (УГ) Страница 15

Тут можно читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (УГ). Жанр: Справочная литература / Энциклопедии, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
БСЭ БСЭ - Большая Советская Энциклопедия (УГ)

БСЭ БСЭ - Большая Советская Энциклопедия (УГ) краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «БСЭ БСЭ - Большая Советская Энциклопедия (УГ)» бесплатно полную версию:

БСЭ БСЭ - Большая Советская Энциклопедия (УГ) читать онлайн бесплатно

БСЭ БСЭ - Большая Советская Энциклопедия (УГ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ

  Сапропелиты (сапропелевые угли) — продукт преобразования низших растений и микроорганизмов планктона, накапливавшихся в органогенном иле озёр и морских лагун. На равных стадиях преобразования органического вещества сапропелиты отличаются от гумолитов более высоким выходом летучих веществ (60—80%) и содержанием водорода (8— 12%).

  Сапрогумолиты — переходная разность У. и., продукт преобразования высших, а также низших растений. Сапропелиты и сапрогумолиты обычно залегают в виде прослоев и линз среди гумусовых углей. Высокозольные разности сапропелитов называют горючими сланцами ; они нередко образуют самостоятельные бассейны (например, Прибалтийский сланцевый бассейн ) и месторождения.

  Минеральные примеси находятся либо в тонкодисперсном состоянии в органической массе, либо в виде тончайших прослоек и линз, а также кристаллов и конкреций. Источником минеральных примесей в У. и. могут быть: неорганические составные части растений-углеобразователей; терригенный материал, приносимый в области торфообразования водой и ветром, а также минеральные новообразования, выпадающие из растворов вод, циркулирующих в торфяниках. Состав минеральных примесей — кварц, глинистые минералы (главным образом каолиниты), полевые шпаты, пирит, марказит, карбонаты и др. соединения, содержащие Si, Al, Fe, Ca, Mg, К, Na, Ti, редкие и рассеянные элементы (U, Ge, Ga, V и др.). Содержание минеральных примесей изменяется в широких пределах; большая часть из них при сжигании У. и. превращается в золу.

  Различия в исходном материале, степени обводнённости торфяников, химическом составе среды и фациальных обстановках осадко- и торфонакопления, обусловливающие направленность и интенсивность протекания окислительных и восстановительных микробиологических процессов, создали в торфяной стадии основу для образования различных генетических типов У. и. (см. Углепетрография ). Торфообразование и торфонакопление завершались перекрытием торфяника осадками, образующими породы кровли. Происходившие при относительно невысоких температурах и давлении диагенетические (уплотнение, дегидратация осадков, газовыделение) и биохимические процессы восстановительного характера приводили к превращению торфа в бурый уголь . У. и., включающие слабо разложившиеся древесные остатки, сцементированные землистым углём, называемые лигнитами.

  Бурые угли — одна из разновидностей У. и. — имеют широкое распространение. Доля запасов бурых углей и лигнитов в мировых запасах У. и.— 42%. Неглубокое залегание и большая мощность угольных пластов позволяют широко применять открытый способ разработки, экономические и технические преимущества которого во многом компенсируют относительно низкое качество сырья.

  В результате длительного воздействия повышенных температур и давления бурые угли преобразуются в каменные угли , а последние — в антрациты . Необратимый процесс постепенного изменения химического состава (прежде всего в направлении обуглероживания), физических и технологических свойств органического вещества в преобразованиях от торфа до антрацита называются углефикацией. Углефикация на стадиях превращения бурых углей в каменные и последних в антрациты, обусловленная происходящими в земной коре процессами, носит название метаморфизма углей. Выделяют 3 основных вида метаморфизма углей: региональный, вызванный воздействием внутренней теплоты Земли и давления перекрывающей толщи пород при погружении У. и. в глубь земной коры; термальный — под влиянием тепла, выделяемого магматическими телами, перекрывшими или внедрившимися в угленосную толщу, либо в подстилающие её отложения; контактовый — под воздействием тепла изверженных пород, внедрившихся в угольные пласты или пересекших их непосредственно; проблематично признаётся возможным метаморфизм углей за счёт повышения температур в областях проявления тектонических сжимающих и скалывающих) усилий — динамометаморфизма.

  Структурно-молекулярная перестройка органического вещества при метаморфизме углей сопровождается последовательным повышением в них относительного содержания углерода, снижением содержания кислорода, выхода летучих веществ; в определённых закономерностях с экстремальными значениями на средних стадиях углефикации изменяются содержание водорода, теплота сгорания, твёрдость, плотность, хрупкость, оптические, электрические и др. физические свойства У. и. (рис. 1 ). Для определения этих стадий используются: выход летучих веществ V Г , содержание углерода, микротвёрдость и др. особенности химического состава и физических свойств углей. Наиболее эффективен метод определения стадии углефикации по отражательной способности витринита ®.

  Каменные угли на средних стадиях метаморфизма приобретают спекающие свойства — способность гелифицированных и липоидных компонентов органического вещества переходить при нагревании в определённых условиях в пластического состояние и образовывать пористый монолит — кокс . Относительное количество запасов У. и. с высокой спекающейся способностью составляет 10—15% от общих запасов каменных углей, что связано с более высокой интенсивностью преобразования органических вещества на средних стадиях метаморфизма. Спекающиеся угли возникают при температурах примерно от 130 до 160—180 °С при общем диапазоне температур, обусловливающих протекание метаморфизма У. и., от 70—90 °С для длиннопламенных углей до 300—350 °С для антрацитов. Наиболее высококачественные спекающиеся угли формировались в бассейнах, испытавших региональный метаморфизм при глубоком погружении угленосной толщи. При термальном и контактовом метаморфизме в связи с резким изменением температур и невысоким давлением преобразование органического вещества протекает неравномерно и качество углей отличается невыдержанностью технологических свойств. Породы угленосных формаций наряду с метаморфизмом углей испытывают катагенетические преобразования (см. Катагенез ).

  В зонах аэрации и активного действия подземных вод вблизи поверхности Земли У. и. подвергаются окислению. По своему воздействию на химический состав и физические свойства У. и. окисление имеет обратную направленность по сравнению с метаморфизмом: У. п. утрачивают прочностные свойства (до превращения их в сажистое вещество) и спекаемость; в них возрастает относительное содержание кислорода, снижается количество углерода, увеличиваются влажность и зольность, резко снижается теплота сгорания. Глубина окисления У. и. в зависимости от современного и древнего рельефа, положения зеркала грунтовых вод, характера климатических условий, вещественного состава и метаморфизма углей колеблется от 0 до 100 м по вертикали.

  Различия в вещественном составе и степени метаморфизма обусловили большую дифференциацию технологических свойств У. и. Для установления рационального направления промышленного использования У. и. подразделяются на марки и технологические группы; в основу такого подразделения положены параметры, характеризующие поведение У. и. в процессе термического воздействия на них (см. табл.). Границей между бурыми и каменными углями принята высшая теплота сгорания рабочей массы беззольного угля, равная 5700 ккал/кг (23,86 Мдж ).

  Ведущий показатель при использовании У. и. в энергетических целях — низшая теплота сгорания — в пересчёте на рабочее топливо (Qп н ) колеблется в пределах (ккал/кг ): 2000—5000 (8,372—20,930 Мдж ) для бурых, 4100—6900 (17,162 — 28,893 Мдж ) для каменных углей и 5700—6400 (23,86—26,79 Мдж ) для антрацитов. Пониженная величина этого показателя у бурых углей объясняется низкой степенью углефикации органического вещества, слабой уплотнённостью материала и, соответственно, высокой их естественной влажностью, изменяющейся в пределах 15—58%. По содержанию рабочей влаги (W p ) бурые угли подразделяются на технологические группы: Б1 с Wp > 40%, Б2 с Wp 30—40% и Б3 с Wp < 30%.

  В основу промышленной маркировки каменных углей положены показатели, характеризующие результаты их высокотемпературной сухой перегонки (коксования): выход летучих веществ, образующихся при разложении органической массы (частично неорганического материала — сульфидов, карбонатов, гидратированных минералов), и характеристика беззольного горючего остатка — кокса по спекаемости. Весовой выход летучих веществ (VГ ) из У. и, последовательно снижается с повышением степени углефикации от 45 до 8% у каменных углей и до 8—2% у антрацитов.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.