БСЭ - Большая Советская энциклопедия (АН) Страница 18
- Категория: Справочная литература / Энциклопедии
- Автор: БСЭ
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 155
- Добавлено: 2019-05-21 15:42:47
БСЭ - Большая Советская энциклопедия (АН) краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «БСЭ - Большая Советская энциклопедия (АН)» бесплатно полную версию:БСЭ - Большая Советская энциклопедия (АН) читать онлайн бесплатно
С другой стороны, для справедливости теоремы единственности А. ф. существенно свойство связности множества E. Поэтому А. ф. рассматриваются обычно в областях, т.е. на открытых и связных множествах.
Важную роль в изучении А. ф. играют точки, в которых нарушается свойство аналитичности — т. н. особые точки А. ф. Рассмотрим здесь изолированные особые точки (однозначных) А. ф. Пусть f — А. ф. в области вида 0 < |z - z0| < r; в этой области f разлагается в ряд Лорана:
содержащий, вообще говоря, не только положительные, но и отрицательные степени z - z0. Если в этом разложении члены с отрицательными степенями отсутствуют (an = 0 для n = -1, -2,...), то z0 называется правильной точкой f. В правильной точке существует и конечен
полагая f(z0) = a0, получают функцию, аналитическую во всём круге ïz - z0ï < r.
Если ряд Лорана функции f содержит лишь конечное число членов с отрицательными степенями z - z0:
то точка z0 называется полюсом функции f (порядка m); полюс z0 характеризуется тем, что
В случае, если ряд Лорана содержит бесконечное число отрицательных степеней z — z0, то z0 называется существенно особой точкой; в таких точках не существует ни конечного, ни бесконечного предела функции f. Если z0 — изолированная особая точка функции f, то коэффициент a-1 в её разложении в ряд Лорана называется вычетом функции f в точке z0.
Функции, представимые в виде отношения двух функций, аналитических в области D, называется мероморфными в области D. Мероморфная в области функция аналитична в этой области за исключением, быть может, конечного или счётного множества полюсов; в полюсах значения мероморфной функции считаются равными бесконечности. Если допустить такие значения, то мероморфные в области D функции могут быть определены как функции, которые в окрестности каждой точки z0 области D представимы рядом по степеням z — z0, содержащим конечное (зависящее от z0) число членов с отрицательными степенями z — z0.
Часто аналитическими в области D называют как аналитические (голоморфные), так и мероморфные в этой области функции. В этом случае голоморфные функции называют также регулярными аналитическими или просто регулярными. Простейший класс А. ф. составляют функции, аналитические во всей плоскости; такие функции называют целыми. Целые функции представляются рядами вида
a0 + a1z + a2z2 + ... + anzn +...,
сходящимися во всей комплексной плоскости. К ним относятся многочлены от z, функции
Функции, мероморфные во всей плоскости (т. е. представимые в виде отношения целых функций), называются мероморфными функциями. Таковыми являются рациональные функции от z (отношения многочленов),
эллиптические функции и т. д.
Для изучения А. ф. важное значение имеют связанные с ними геометрические представления. Функцию w = f(z), z(D можно рассматривать как отображение области D в плоскость переменного w. Если f есть А. ф., то образ f(D) области D также является областью (принцип сохранения области). Из условия комплексной дифференцируемости функции f в точке z0ÎD следует, что при f’(z0) ¹ 0 соответствующее отображение сохраняет углы в z0, как по абсолютному значению, так и по знаку, т. е. является конформным. Т.о., существует тесная связь между аналитичностью и важным геометрическим понятием конформного отображения. Если f аналитична в D и f(z¢) ¹ f(z¢¢) при z¢ ¹ z¢¢ (такие функции называются однолистными), то f¢ (z) ¹ 0 в D и f определяет взаимно однозначное и конформное отображение области D на область G = f(D). Теорема Римана — основная теорема теории конформных отображений — утверждает, что в любой односвязной области, граница которой содержит более одной точки, существуют однолистные А. ф., конформно отображающие эту область на круг или полуплоскость.
Дифференцируя уравнения Коши — Римана, нетрудно усмотреть, что действительная и мнимая части функции f = j+iy, аналитичны в области D, удовлетворяют в этой области уравнению Лапласа:
т. е. являются гармоническими функциями. Две гармонические функции, связанные между собой уравнениями Коши — Римана, называются сопряжёнными. В односвязной области D любая гармоническая функция j имеет сопряжённую функцию y и является, тем самым, действительной частью некоторой аналитической в D функции f. Связи с конформными отображениями и гармоническими функциями лежат в основе многих приложений теории А. ф.
Всё сказанное выше относилось к однозначным А. ф. f рассматриваемым в данной области D комплексной плоскости. Задаваясь вопросом о возможности продолжения функции f как А. ф. в большую область, приходят к понятию А. ф., рассматриваемой в целом — во всей своей естественной области существования. При таком продолжении данной функции область её аналитичности, расширяясь, может налегать сама на себя, доставляя новые значения функции в точках плоскости, где она уже была определена. Поэтому А. ф., рассматриваемая в целом, вообще говоря, оказывается многозначной. К необходимости изучения многозначных А. ф. приводят многие вопросы теории функций (обращение функций, нахождение первообразных и построение А. ф. с заданной действительной частью — в многосвязных областях, решение алгебраических уравнений с аналитичными коэффициентами и др.); такими функциями являются
алгебраические функции и т. д. Регулярный процесс, приводящий к полной А. ф., рассматриваемой в своей естественной области существования, был указан К. Вейерштрассом; он носит название аналитического продолжения по Вейерштрассу.
Исходным является понятие элемента А. ф. — степенного ряда с ненулевым радиусом сходимости. Такой элемент W0: a0 + a1(z - z0) + a2(z - z0)2 + ... + an(z - z0)n + ... определяет некоторую А. ф. f в своём круге сходимости K0. Пусть z1 — точка круга K0, отличная от z0. Разлагая функцию f в ряд Тейлора с центром в точке z1, получают новый элемент W1:
b0 + b1(z - z1) + b2(z- z1)2 + ... +bn(z— z1)n + ... ,
круг сходимости которого обозначают через K1. В общей части кругов K0 и K1 ряд W1 сходится к той же функции, что и ряд W0. Если круг K1 выходит за пределы круга K0, то ряд W1 определяет функцию, заданную посредством W0, на некотором множестве вне K0 (где ряд W0 расходится). В этом случае элемент W1 называется непосредственным аналитичным продолжением элемента W0. Пусть W0, W1 ..., WN — цепочка элементов такая, что Wi+1 является непосредственным аналитичным продолжением Wi (i = 1, ..., N — 1); тогда элемент WN называется аналитичным продолжением элемента W0 (посредством данной цепочки элементов). Может оказаться так, что центр круга KN принадлежит кругу K0, но элемент WN не является непосредственным аналитичным продолжением элемента W0. В этом случае суммы рядов W0 и WN в общей части кругов K0 и KN имеют различные значения; тем самым аналитичное продолжение может привести к новым значениям функции в круге K0.
Совокупность всех элементов, которые могут быть получены аналитичным продолжением элемента W0, образует полную А. ф. (в смысле Вейерштрасса), порожденную элементом W0; объединение их кругов сходимости представляет собой (вейерштрассову) область существования этой функции. Из теоремы единственности А. ф. следует, что А. ф. в смысле Вейерштрасса полностью определяется заданием элемента W0 При этом в качестве исходного может быть взят любой др. элемент, принадлежащий этой функции; полная А. ф. от этого не изменится.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.