Д Самин - 100 великих научных открытий Страница 22

Тут можно читать бесплатно Д Самин - 100 великих научных открытий. Жанр: Справочная литература / Энциклопедии, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Д Самин - 100 великих научных открытий

Д Самин - 100 великих научных открытий краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Д Самин - 100 великих научных открытий» бесплатно полную версию:
В пору становления науки ею занимались лишь преданные одиночки, а полученные ими результаты долгое время не считались обязательными для всех. Но именно научный метод преобразовал наш мир, и именно на основе успехов этого метода наука дала человеку власть над природой. И как бы ни развивалось человечество, оно всегда будет пользоваться плодами великих научных открытий.Новая книга из известной серии «100 великих» представляет захватывающую галерею триумфов человеческого разума: от закона Архимеда, великих прозрений Пифагора, догматов Аристотеля и Галена до квантовой механики, концепции «Большого взрыва» и теории прибавочной стоимости.

Д Самин - 100 великих научных открытий читать онлайн бесплатно

Д Самин - 100 великих научных открытий - читать книгу онлайн бесплатно, автор Д Самин

В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на; то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель. Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним. В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного. Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом. И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.

Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление. Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.

Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока. Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток. Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения. Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток. И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра.

Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя». Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

Русский физик Эмиль Христофорович Ленц (1804–1861) дал правило для определения направления индукционного тока.

«Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, — отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. — Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания.

Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.

Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции дал английский физик Джемс Клерк Максвелл — творец законченной математической теории электромагнитного поля.

Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл. При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь — возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле.

Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток — это просто прибор, позволяющий обнаружить электрическое поле. Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения.

А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире…

ЗАКОН МИНИМУМА

Все животные, а также и человек питаются пищей либо растительного, либо животного происхождения. Поэтому вопрос о том, откуда именно растения берут свое питание, принадлежит к вопросам величайшего значения.

«Уже давно над этим вопросом задумывались лучшие исследователи, — пишет З.Шпаусус. — Давно обращало на себя внимание то обстоятельство, что растение в течение своей жизни произрастает из ничтожного зернышка семени до своей нормальной величины и при этом обнаруживается громаднейший привес. Аристотель считал, что растения поглощают из почвы необходимые материалы для своего построения в их окончательной форме, так что не встречается необходимости в каких-либо преобразованиях этих материалов внутри их организма. В 1600 году Ван-Гельмонт своим опытом сумел доказать неправильность этих предположений. Он отвесил в горшки 200 фунтов сухой земли и воткнул в нее ветку вербы, вес которой был равен 5 фунтам. При обильной поливке водой эта ветвь проявляла себя как целая верба: она пустила корни и на протяжении дальнейших пяти, лет выросла в порядочное дерево весом в 164 фунта. Особенно удивило Ван-Гельмонта то обстоятельство, что земля при этом потеряла лишь 60 граммов своего первоначального веса. Таким образом, земля никоим образом не могла быть признана единственным поставщиком питательных материалов для растущего дерева, ибо в этом случае 159 фунтов привеса ветки вербы должны были бы соответствовать равновеликой убыли веса земли.

Ингенгауз и де Соссюр в конце XVIII века были учеными, впервые разработавшими современную теорию питания растений, согласно которой растения поглощают двуокись углерода из воздуха, что и имеет своим результатом более значительное увеличение веса сухого вещества растений, чем этого можно было бы ожидать на основании количеств фактически поглощенной ими двуокиси углерода. Поэтому приходится допустить, что из двуокиси углерода и воды образуется новое органическое вещество. Названные ученые уже в то время считали, что необходимо и присутствие в почве некоторых солей.

Как бы своевременны и правильны во многих отношениях ни были эти выводы, они все же оказались забытыми в начале XIX века и были заменены гумусовой теорией, которая главным образом восходит к Таеру, бывшему ее наиболее усердным защитником».

Точка зрения Таера, основателя учения о севообороте, заключалась в том, что плодородие почвы зависит исключительно от гумуса. Тот является единственным источником, снабжающим растения питательными материалами. В гумусе — рыхлой темной земле — содержится много углерода — главной составной части всех растений. По мнению защитников гумусовой теории, в нем содержатся все необходимые для жизни растений вещества в уже подготовленной форме. Соли не являются, по их мнению, особенно важными, так что относительно их происхождения и значения не стоило особенно задумываться. Гумус и вода — вот источники питания растений.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.