БСЭ БСЭ - Большая Советская Энциклопедия (АЭ) Страница 4
- Категория: Справочная литература / Энциклопедии
- Автор: БСЭ БСЭ
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 21
- Добавлено: 2019-05-22 12:09:59
БСЭ БСЭ - Большая Советская Энциклопедия (АЭ) краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «БСЭ БСЭ - Большая Советская Энциклопедия (АЭ)» бесплатно полную версию:БСЭ БСЭ - Большая Советская Энциклопедия (АЭ) читать онлайн бесплатно
Широкая область неавиационных приложений А. входит в науку, называемую промышленной аэродинамикой. В ней рассматриваются вопросы, связанные с расчётом воздуходувок, ветровых двигателей, струйных аппаратов (эжекторов), вентиляционной техники (в частности, кондиционирования воздуха), а также вопросы, связанные с аэродинамическими силами, возникающими при движении наземного транспорта (автомобилей, поездов), и ветровыми нагрузками на здания и сооружения.
В СССР, кроме ЦАГИ, большая научно-исследовательская работа в области А. ведётся в ЦИАМе, в научно-исследовательских институтах АН СССР, в отраслевых научно-исследовательских институтах, в Московском, Ленинградском и других университетах, Московском и Харьковском авиационных институтах, в МВТУ, в Военно-воздушной инженерной академии им. Н. Е. Жуковского и других высших учебных заведениях. В США общее руководство исследованиями в области А. осуществляет NASA (Национальный комитет по аэродинамике и исследованию космического пространства), располагающий крупными лабораторными центрами в Моффетт-Филде (штат Калифорния), Ленгли-Филде (штат Виргиния) и др., а также в Калифорнийском и Массачусетсском технологических институтах, исследовательских институтах ВВС, ВМС и лабораториях крупных фирм, производящих самолёты, ракеты и вооружение. Крупные центры исследований в области А. имеются в Англии, Франции, Японии и других странах.
Результаты научных исследований публикуются в периодических изданиях: «Известия АН СССР. Механика жидкости и газа» (с 1966); «Журнал прикладной механики и технической физики» (с 1960); «АIAA Journal» (N. Y., с 1963 — переводится на рус. яз.); «Journal of the Royal Aeronautical Society» (L., с 1897).
Лит.: Фабрикант Н. Я., Аэродинамика, ч. 1, М.—Л., 1962: Прандтль Л., Гидроаэродинамика, пер. с нем., 2 изд., М., 1951; Мартынов А. К., Экспериментальная аэродинамика, 2 изд., М., 1958; Пышнов В. С., Аэродинамика самолета, М., 1943; Остославский И. В., Титов В. М.. Аэродинамический расчет самолета, М., 1947; Глауэрт Г., Основы теории крыльев и винта, пер. с англ., М.—Л., 1931.
М. Я. Юделович.
Аэродинамика зданий
Аэродина'мика зда'ний, научная дисциплина, изучающая воздушные потоки, возникающие около зданий и внутри них под действием ветра, разности температур внутреннего и наружного воздуха, вентиляции и осуществляемых в помещениях производственных процессов (см. также Аэрация зданий).
Лит.: Реттер Э. И. и Стриженов Е. И., Аэродинамика зданий, М., 1968.
Аэродинамика разреженных газов
Аэродина'мика разре'женных га'зов, раздел механики газов, в котором для описания движения газов необходимо учитывать их молекулярное строение. Методы А. р. г. широко применяют при определении аэродинамического нагрева приземляющихся орбитальных аппаратов, низко летящих спутников Земли, для расчёта теплового режима приборных датчиков ракет, зондирующих верхние слои атмосферы, и т. д. Точный прогноз траекторий околопланетных спутников, испытывающих тормозящее действие разреженной атмосферы, невозможен без знания методов А. р. г., с помощью которых определяются аэродинамические силы и моменты, действующие на летящее в газе тело. А. р. г. изучает также течения газов в вакуумных системах, ультразвуковые колебания в газе и другие проблемы молекулярной физики.
На больших высотах атмосфера очень разрежена и средняя длина свободного пробега l молекул между двумя соударениями становится сравнимой с характерным размером движущегося в атмосфере тела d (или рассматриваемой области потока). Поэтому методы расчёта течения, применяемые в аэродинамике и газовой динамике, основанные на представлении о газе, как о сплошной среде (континууме), непригодны и приходится прибегать к кинетической теории газа. При высоких температурах газа, имеющих место, например, при очень больших скоростях полёта, течение может сопровождаться эффектами возбуждения молекул, их диссоциацией, ионизацией и т. д. Эти проблемы также изучаются в А. р. г. А. р. г. принято делить на три области:
1) свободное молекулярное течение,
2) промежуточная область,
3) течение со скольжением (рис. 1).
При свободно молекулярном обтекании у отражённых от тела молекул длина свободного пробега l больше характерного размера тела d, поэтому взаимодействие отражённых молекул с набегающими молекулами вблизи тела незначительно. Это даёт возможность рассматривать падающий и отражённый потоки молекул независимо, что существенно облегчает описание их движения. Движение любой молекулы можно считать как бы состоящим из двух: 1) молекулы участвуют в направленном движении газового потока и их скорость равна скорости потока в целом; 2) одновременно молекулы участвуют в хаотическом тепловом движении и при этом движутся с различными скоростями, значения которых описываются Максвелла распределением. Применение кинетической теории газов даёт принципиальную возможность рассчитать как давление газа на стенку, так и количество тепла, которое она получает или отдаёт при взаимодействии с молекулами газа. Для этого необходимо знать законы отражения молекул от твёрдой поверхности.
Однако точное математическое описание движения разреженного газа с помощью уравнений кинетической теории представляет значительные трудности. Это заставляет развивать приближённые методы. Например, реальное отражение молекулы от тела заменяется т. н. зеркально-диффузной схемой, согласно которой часть молекул отражается от поверхности тела зеркально, другая — рассеивается диффузно, в соответствии с Ламберта законом (законом косинуса).
Отношение количества диффузно рассеянных молекул к общему их числу определяет степень диффузности рассеяния, которая характеризуется числом f (при f = 0 происходит только зеркальное отражение, при f = 1 — только диффузное). Для снижения сопротивления летящего тела выгодно зеркальное отражение, а также малые углы падения молекул на поверхность, т. к. при этом увеличивается вероятность зеркального отражения.
Другим существенным параметром является т. н. коэффициент термической аккомодации а, который характеризует изменение энергии молекулы после её отражения. Значения а могут меняться от 0 до 1. Если после отражения энергия молекулы не изменилась и осталась равной энергии падающей молекулы, то а = 0. Если же средняя энергия отражённой молекулы соответствует температуре стенки, то это значит, что она отдала стенке всю возможную энергию и а = 1. Очевидно, что аэродинамический нагрев тем меньше, чем меньше а.
Величины f и а — наиболее важные характеристики А. р. г. В общем случае а и f зависят от скорости движения потока газа, материала и температуры стенки, от гладкости её поверхности, наличия на поверхности адсорбированных молекул газа и т. д. Однако точных зависимостей a иf от определяющих их параметров ещё не получено.
Эксперименты, проведённые в широком диапазоне скоростей для различных газов и материалов, дают значения a в широких пределах — от 0,95 до 0,02. Установлено, что уменьшение a происходит при увеличении скорости молекул газа и отношения молекулярных масс m1 и m2 тела и газа. Так например, если вместо тела из алюминия взять тело из свинца, то коэффициент аккомодации уменьшается примерно в 4 раза, что приводит к уменьшению аэродинамического нагрева. Коэффициент f изменяется меньше: от 0,98 до 0,7.
Разреженность среды проявляется в совершенно необычном поведении аэродинамических коэффициентов. Так, коэффициент сопротивления сферы Cx зависит от отношения абсолютной температуры тела Tw к абсолютной температуре потока Ti а также от a и f (рис. 2), в то время как в сплошной среде таких зависимостей не наблюдается. Коэффициенты, характеризующие теплообмен, также отличаются качественно и количественно от континуальных.
Промежуточная область. При l/d ~ 1 существенна роль межмолекулярных столкновений, когда отражённые от поверхности тела молекулы значительно искажают распределение скоростей молекул набегающего потока. Теоретические решения для свободномолекулярного потока здесь неприемлемы. Вместе с тем, такое течение ещё нельзя рассматривать как течение сплошной среды. Промежуточная область весьма трудна для математического анализа.
Течение со скольжением. Если размер тела d в десятки раз больше l, т. е. l/d < 1, то в потоке уже могут возникать характерные для газовой динамики ударные волны и пограничные слои на поверхности тел. Однако, в отличие от обычного пограничного слоя, температура примыкающего к стенке газа Ta не равна температуре стенки Tw, а скорость потока на поверхности тела не равна нулю (поток проскальзывает). Скачок температуры (Tw—Ta) пропорционален l и зависит от f. Скорость скольжения также пропорциональна l и зависит от f. Эксперименты показывают, что при увеличении разреженности газа происходит утолщение ударной волны, возрастает и толщина пограничного слоя, но значительно медленнее (рис. 3). Ударная волна может распространиться на всю область сжатого газа в районе передней критической точки обтекаемого тела и слиться с пограничным слоем. Распределение плотности в районе передней критической точки становится плавным, а не скачкообразным, как в континууме. При расчёте течений со скольжением поток описывается обычными уравнениями газовой динамики, но с граничными условиями, учитывающими скачок температуры и скорость скольжения.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.