Евгений Банников - Сварка Страница 42

Тут можно читать бесплатно Евгений Банников - Сварка. Жанр: Справочная литература / Руководства, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Евгений Банников - Сварка

Евгений Банников - Сварка краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Евгений Банников - Сварка» бесплатно полную версию:
Это прикладное руководство необходимо как начинающим сварщикам, так и мастерам-любителям. В ней собрана вся основная информация для самостоятельной подготовки материалов и работы на сварочном аппарате.Книга может использоваться как при самостоятельном обучении, так и для профессиональной подготовки к учебному заведению по профессии «сварщик».Она содержит основные понятия и определения обо всех видах сварки, включая дуговую, холодную и газовую, а так же полное описание соединений, применяемых материалах и аппаратуре. Рассмотрены правила безопасной эксплуатации портативных сварочных аппаратов и промышленной техники.

Евгений Банников - Сварка читать онлайн бесплатно

Евгений Банников - Сварка - читать книгу онлайн бесплатно, автор Евгений Банников

2. Температура плавления оксидов должна быть ниже температуры плавления самого металла, чтобы образующиеся оксиды легко выдувались и не препятствовали дальнейшему окислению и процессу резки. Например, при резке хромистых сталей образуются оксиды хрома с температурой плавления 2000 °C, а при резке алюминия – оксиды с температурой плавления около 2050 °C. Эти оксиды покрывают поверхность металла и препятствуют дальнейшему процессу резки.

3. Образующиеся при резке шлаки должны быть достаточно текучи и легко выдуваться из разреза. Тугоплавкие и вязкие шлаки будут препятствовать процессу резки.

4. Теплопроводность металла должна быть наименьшей, так как при высокой теплопроводности теплота, сообщаемая металлу, будет интенсивно отводиться от участка резки и подогреть металл до температуры воспламенения будет трудно.

5. Количество теплоты, выделяющейся при сгорании металла, должно быть возможно большим – она способствует нагреванию прилегающих участков металла и тем самым обеспечивает непрерывность процесса резки. Например, при резке низкоуглеродистой стали около 70 % общего количества теплоты выделяется от сгорания металла в струе кислорода и только 30 % составляет теплота от подогревающего пламени резака.

Различают два вида кислородной резки: разделительную и поверхностную.

Разделительная резка применяется для вырезки различного вида заготовок, раскроя листового металла, разделки кромок под сварку и других работ, связанных с разрезкой металла на части. Сущность процесса заключается в том, что металл вдоль линии разреза нагревают до температуры воспламенения его в кислороде, он сгорает в струе кислорода, а образующиеся оксиды выдуваются этой струей из места разреза.

Поверхностная резка (рис. 79) применяется для снятия поверхностного слоя металла, разделки каналов, удаления поверхностных дефектов и других работ. Резаки имеют большую длину и увеличенные сечения каналов для газов подогревающего пламени и режущего кислорода.

Рис. 79. Схема поверхностной резки:

1 – мундштук; 2 – шлак; 3 – канавка

Применяют два вида поверхностной резки – строжку и обточку. При строжке резак совершает возвратно-поступательное движение как строгальный резец. При обточке резак работает как токарный резец. Наклон мундштука резака к поверхности металла в начале реза составляет 70–80°. После начала горения угол наклона плавно уменьшают до 15–20°. Уменьшение угла наклона увеличивает ширину и уменьшает глубину строжки.

Оборудование для кислородной резки

Резаки классифицируют:

• по назначению – универсальные и специальные;

• по принципу смешения газов – инжекторные и безынжекторные;

• по виду резки – для разделительной и поверхностной резки;

• по применению – для ручной и машинной резки.

Широкое применение получили универсальные инжекторные ручные резаки для разделительной резки. Резаки отличаются от сварочных горелок наличием отдельной трубки для подачи режущего кислорода и особым устройством головки, состоящей из двух сменных мундштуков: наружного – для подогревающего пламени и внутреннего – для струи чистого кислорода (рис. 80).

Рис. 80.

Схема газокислородного резака:

Р – режущая часть; П – подогревающая часть; 1 – ацетилен; 2 – кислород; 3 – мундштук; 4 – вентиль; 5 – шланг подачи кислорода

Ацетилен подается по шлангу к ацетиленовому ниппелю. Кислород – к кислородному ниппелю. От ниппеля кислород идет по двум направлениям: одна часть кислорода, как в обычных сварочных горелках, поступает в инжектор и затем в смесительную камеру. Здесь образуется горючая смесь кислорода с ацетиленом, засасываемым через ниппель. Горючая смесь проходит по трубке, выходит через кольцевой зазор между внутренним и наружным мундштуком и создает подогревательное пламя. Другая часть кислорода через трубки Р поступает в центральное отверстие внутреннего мундштука и образует струю режущего кислорода, сжигающую металл и выдувающую образующиеся оксиды из зоны резака.

Широкое применение получил ручной универсальный резак «Факел», являющийся улучшенной конструкцией резака «Пламя». Он имеет пять внутренних и два наружных мундштука, позволяющих резать металл толщиной до 300 мм со скоростью 80–560 мм/мин. Для работы на газах—заменителях ацетилена используются резаки типа РЗР. Они отличаются большими размерами сечений инжекторов и мундштуков. Существуют вставные сменные резаки, предназначенные для присоединения к стволам универсальных сварочных горелок: резак РГС-70 – к горелкам типа «Звезда» и ГС-3, резак РГМ-70 – к горелкам типа «Звездочка» и ГС–2. Это создает большие удобства в строительно-монтажных условиях при частых переходах от сварки к резке и наоборот.

Для машинной резки применяют стационарные шарнирные машины АСШ-2 и АСШ-70. АСШ-70 отличается более совершенным приводом и наличием пантографического устройства, позволяющего производить вырезку одновременно трех деталей. Толщина разрезаемого металла 5–100 мм. Усовершенствованные машины типа АСШ-74 производят резку листовой стали толщиной до 150 мм со скоростью 0,1–1,6 м/мин. Переносные машины представляют собой самоходные тележки, оснащенные резаком и перемещающиеся по разрезаемому металлу. Приводом служит электродвигатель, пружинный механизм или газовая турбина. Например, машина «Микрон–2» предназначена для механизированной кислородной резки листовой низкоуглеродистой стали толщиной до 100 мм со скоростью до 4 м/мин.

Техника резки

На поверхности разрезаемого металла могут быть грязь, краска, окалина и ржавчина, поэтому она должна быть хорошо очищена. Для удаления окалины, краски и масла достаточно медленно провести пламенем горелки или резака по поверхности металла вдоль намеченной линии разреза. При этом краска и масло выгорают, а окалина отстает от металла. Затем поверхность металла зачищают металлической щеткой.

Процесс резки начинают с нагревания металла. Подогревающее пламя резака направляют на край разрезаемого металла и нагревают до температуры воспламенения его в кислороде, практически составляющей температуру плавления. Затем пускают струю режущего кислорода и перемещают резак вдоль линии разреза.

В процессе резки кислород сжигает верхние нагретые слои металла. Теплота, выделяющаяся при сгорании, нагревает нижележащие слои металла до температуры воспламенения и поддерживает непрерывность процесса резки.

При резке листового материала толщиной до 30 мм мундштук резака устанавливают вначале под углом 5° к поверхности, а затем – под углом 20–30° в сторону, обратную движению резака. Это ускоряет процесс разогрева металла и повышает производительность процесса резки.

Резку металла большой толщины выполняют следующим образом: мундштук резака вначале устанавливают перпендикулярно поверхности разрезаемого металла – так, чтобы струя подогревающего пламени, а затем и режущего кислорода, располагалась вдоль вертикальной грани разрезаемого металла. После прогрева металла до температуры воспламенения пускают струю режущего кислорода. Перемещение резака вдоль линии резания начинают после того, как в начале этой линии металл будет прорезан на всю его толщину. Чтобы не допустить отставания резки в нижних слоях металла, в конце процесса следует постепенно замедлить скорость перемещения резака и увеличивать наклон мундштука резака до 10–15° в сторону, обратную его движению.

Рекомендуется начинать процесс резки с нижней кромки. Предварительный подогрев до 300–400 °C позволяет производить резку повышенной скоростью. Скорость перемещения резака должна соответствовать скорости горения металла. Если скорость перемещения резака установлена правильно, то поток искр и шлака вылетает из разреза прямо вниз, а кромки получаются чистыми, без натеков и подплавлений. При большой скорости перемещения резака поток искр отстает от него, металл в нижней кромке не успевает сгореть и сквозное прорезание прекращается. При малой скорости сноп искр опережает резак, кромки разреза оплавляются и покрываются натеками.

Давление режущего кислорода устанавливают в зависимости от толщины разрезаемого металла и чистоты кислорода. Чем выше чистота кислорода, тем меньше его давление и расход. Ширина и чистота разреза зависят от способа резки и толщины разрезаемого металла.

Машинная резка дает более чистые кромки и меньшую ширину разреза, чем ручная резка. Чем больше толщина металла, тем больше ширина разреза. Процесс резки вызывает изменение структуры, химического состава и механических свойств металла.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.