Владимир Андрианов - "Шпионские штучки 2" или как сберечь свои секреты Страница 30
- Категория: Справочная литература / Справочники
- Автор: Владимир Андрианов
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 58
- Добавлено: 2019-05-20 17:04:52
Владимир Андрианов - "Шпионские штучки 2" или как сберечь свои секреты краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Владимир Андрианов - "Шпионские штучки 2" или как сберечь свои секреты» бесплатно полную версию:В настоящем справочном пособии приведены сведения об использовании тайников различных типов. В книге рассматриваются возможные варианты тайников, способы их создания и необходимые при этом инструменты, описываются приспособления и материалы для их сооружения. Даны рекомендации по устройству тайников дома, в автомобилях, на приусадебном участке и т. п.Особое место уделено способам и методам контроля и защиты информации. Приведено описание специального промышленного оборудования, используемого при этом, а также устройств, доступных для повторения подготовленными радиолюбителями.В книге дано подробное описание работы и рекомендации по монтажу и настройке более 50 устройств и приспособлений, необходимых при изготовлении тайников, а также предназначенных для их обнаружения и обеспечения сохранности.Книга предназначена для широкого круга читателей, для всех, кто пожелает ознакомиться с этой специфической областью творения рук человеческих.
Владимир Андрианов - "Шпионские штучки 2" или как сберечь свои секреты читать онлайн бесплатно
Остается приобрести транзистор VT1 (любой из серий МП39— МП42), резистор R1 сопротивлением 1…15 кОм (МЛТ-0,25 или МЛТ-0,125), конденсатор С1 любого типа емкостью 0,05…0,25 мкФ, выключатель SA1 (тумблер) и батарею GB1 напряжением 4,5 В да изготовить два электрода — Е1 и Е2, которые нужно установить на определенной высоте.
Сигнализатор работоспособен лишь при определенном подключении обмоток трансформатора. Это устанавливают при проверке конструкции. Включив питание, подсоедините к электродам резистор сопротивлением примерно 10 кОм. Если звука нет, поменяйте местами выводы от первичной или вторичной обмотки. При одном из подключений звук обязательно появится (если, конечно, движок переменного резистора будет находиться в положении максимальной громкости).
Затем отсоедините от электродов резистор и опустите их в воду на глубину 5…7 мм. Отсутствие звука в этом случае может свидетельствовать лишь о малом коэффициенте передачи тока транзистора. Выход из положения — заменить транзистор.
3.4.2. Сигнализатор влажностиСигнализатор, схема которого приведена на рис. 3.35, позволяет управлять различными исполнительными устройствами, питающимися от силовой сети 220 В.
Сигнализатор известит вас о появлении воды в тайнике и даже может включить откачивающий насос, чтобы понизить ее уровень ниже концов датчиков. Конечно, в случае второго всемирного потопа такая система не поможет, но в обыкновенные дождливые дни и весной, и осенью она прекрасно справится со своей задачей.
Рис. 3.35. Сигнализатор влажности
Принцип работы схемы необычайно прост. База транзистора VT1 подключена через токоограничивающий резистор R1 к первому электроду датчика. Второй электрод, расположенный на той же высоте, подсоединен к положительной шипе питания. Когда вода достигнет электродов датчика, возникающий электрический ток открывает транзистор VT1. Светодиод HL1 (любой), включенный в цепь его коллектора, загорается. Ток коллектора транзистора также протекает через светодиод оптрона микросхемы DA1, включая водяной насос. Использование конденсатора С1, включенного между базой и коллектором транзистора, в цени отрицательной обратной связи позволяет избежать ложных срабатываний от посторонних переменных наводок. Симистор VS1 подберите, исходя из мощности исполнительного устройства. Электроды датчика изготовьте из нержавеющего и неокисляющегося в воде металла, что поможет вам избежать увеличения сопротивления при их контакте с водой. Лучше всего сделать электроды из нержавеющей стали, но в общем случае возможно использование менее водостойких электродов, если, конечно, их очищать время от времени. Они укрепляются параллельно друг другу на расстоянии 2,5 см. Для поддержания их в таком положении возьмите кусочек какого-нибудь изоляционного материала.
Деталей в схеме мало и они вполне уместятся на небольшой плате. Питать сигнализатор можно как от батареи, так и от выпрямителя напряжением +12 В.
3.4.3. Бесконтактные датчики уровня водыРассмотрим две схемы бесконтактных датчиков, использующих пьезоизлучатели. Первая срабатывает при полном погружении пьезоэлемента в воду, а вторая — при соприкосновении воды с поверхностью пьезодатчика.
Известно, что автогенератор с пьезоэлектрическим излучателем (например, ЗП-4), включенным в цепь положительной ОС, работает до тех пор, пока обе плоскости излучателя находятся в воздухе. Если же хотя бы к одной из них слегка прикоснуться пальцем, система окажется демпфированной. Колебания автогенератора при этом срываются. То же самое произойдет, если плоскость излучателя будет касаться поверхности жидкости. Таким образом, когда уровень жидкости высок и она смачивает пьезопластину, генератор не работает. Но как только уровень опустится настолько, что пьезоизлучатель окажется в воздухе, генератор запускается, подавая сигнал на выход датчика. После увеличения количества волы до прежнего уровня генератор снова останавливается.
Схема устройства изображена на рис. 3.36.
Рис. 3.36. Датчик с транзисторным генератором
Автогенератор собран на транзисторе VT1 и пьезоизлучателе BQ1 по довольно распространенной схеме. Он вырабатывает колебания частотой около 2500 Гц, которые через переходную цепь C1R3R4 поступают на вход триггера Шмитта, собранного на логических элементах DD1.1, DD1.2. Триггер преобразует колебания в последовательность прямоугольных импульсов той же частоты, стабильных по амплитуде.
Цепь, состоящая из диода VD2, резисторов R7 и R8 и конденсатора С4, преобразует прямоугольные импульсы в постоянное напряжение, выделяемое на конденсаторе С4. Второй триггер Шмитта, выполненный на элементах DD1.3, DD1.4, служит для дискретизации напряжения на конденсаторе С4, которое меняется довольно плавно. На выходе этого триггера сигнал скачком изменяется с высокого уровня, когда генератор работает, до низкого при его остановке.
Питать устройство можно от источника стабилизированного напряжения 3…15В, если микросхема DD1 — К561ЛА7 или 564ЛА7, и 5…9 В, — если К176ЛА7.
При напряжении 4 В устройство потребляет ток не более 4 мА, а при 15 В — не более 18 мА.
Диоды VD1 и VD3 предохраняют датчик от повреждения при ошибочной перемене полярности напряжения питания. Конденсаторы С2 и СЗ — сглаживающие. Питать датчик допустимо и от батареи элементов или аккумуляторов.
Таким образом, низкому уровню жидкости тут соответствует высокий уровень выходного напряжения, а высокому — низкий. Если же требуется инверсный сигнал, резисторы R3 и R4 нужно поменять местами, а также изменить на обратную полярность включения диода VD2.
Микросхему К561ЛА7 можно заменить на К561ЛЕ5,564ЛА7,564ЛЕ5, К176ЛА7 или К176ЛЕ5 без изменения нумерации выводов, а также четырьмя инверторами микросхемы К561ЛН2 или 564ЛН2 с изменением номеров выводов.
Диоды VD1 — VD3 могут быть любыми из серий КД102, КД103 или другими кремниевыми с допустимым прямым током не менее 20 мА. Транзистор — любой из серий КТ315, КТ312, КТ342, КТ503.
Допустимо применить здесь и транзистор структуры р-n-р (любой из серий КТ208, КТ209, КТ361, КТ502), но в этом случае его эмиттер подключают не к общему проводу, а к плюсовому выводу конденсатора СЗ. Так же поступают и с нижним по схеме выводом излучателя BQ1. Верхний по схеме вывод резистора R1 соединяют с общим проводом.
Описанный датчик чувствителен при работе с жидкостями, срыв колебаний автогенератора происходит, как правило, лишь в том случае, когда пьезоизлучатель полностью погружен в жидкость.
Вследствие того, что вода способна лишь понизить частоту резонанса излучателя примерно на 25 %, а не сорвать колебания генератора путем демпфирования колебаний пьезоизлучателя, датчик уровня жидкостей должен быть устроен несколько иначе (рис. 3.37).
Рис. 3.37. Датчик уровня воды с пьезоэлементом
Здесь автогенератор датчика построен на элементах DD1.1, DD1.2 и пьезоизлучателе BQ1. Элементы DD1.3, DD1.4 образуют триггер Шмитта, а конденсатор С1 и резисторы R3 и R4 — переходную цепь.
Информационный вход D триггера DD2.1 соединен с собственным инверсным выходом, поэтому триггер выделяет период повторения импульсов на входе С (на выходе триггера Шмитта). Триггер DD2.2 играет роль элемента сравнения текущего значения упомянутого периода повторения с образцовой длительностью зарядки конденсатора С4 через резистор R8. Дифференцирующая цепь C5R9 служит для предустановки в единичное состояние триггера DD2.2 после включения питания.
Когда контролируемый уровень жидкости ниже нормы, частота автогенератора высока, поэтому конденсатор С4 за период не успевает зарядиться настолько, чтобы триггер DD2.2 переключился сигналом на входе С в единичное состояние. На выходе 1 устройства будет низкий уровень напряжения, а на выходе 2 — высокий.
Когда уровень жидкости достигнет нижней плоскости датчика — пьезоизлучатсля BQ1, частота автогенератора понизится, а конденсатор С4 за период будет успевать заряжаться до такого напряжения, при котором триггер DD2.2 переключится из нулевого состояния в единичное. На выходах устройства произойдет смена уровней.
Четкость срабатывания устройства обеспечена физическими свойствами самой жидкости. Так, обволакивание нижней плоскости пьезоизлучателя поднявшейся жидкостью и соответствующее понижение частоты автогенератора происходят довольно резко, причем независимо от того, хорошо или плохо смачивает она эту грань.
Столь же резко происходит и разрыв контакта между излучателем и поверхностью жидкости при опускании ее уровня. Важно, что остаточная жидкостная пленка на нижней плоскости датчика почти не изменяет его резонансной частоты. Величина жидкостного «гистерезиса» срабатывания по частоте зависит главным образом от вязкости и температуры жидкости и смачиваемости плоскости датчика.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.