Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике Страница 6

Тут можно читать бесплатно Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике. Жанр: Справочная литература / Справочники, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике» бесплатно полную версию:
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике читать онлайн бесплатно

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике - читать книгу онлайн бесплатно, автор Ангелина Яковлева

– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;

– случайный вектор-столбец ошибок модели регрессии размерности n x 1.

10. Нормальная линейная модель парной (однофакторной) регрессии

Общий вид нормальной (традиционной или классической) линейной модели парной (однофакторной) регрессии (Classical Normal Regression Model):

yi=β0+β1xi+εi,

где yi– результативные переменные,

xi – факторные переменные,

β0, β1 – параметры модели регрессии, подлежащие оцениванию;

εi – случайная ошибка модели регрессии.

При построении нормальной линейной модели парной регрессии учитываются пять условий:

1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии εi;

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:

3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:

4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): Cov(εi,εj)=E(εi,εj)=0 (). Это условие выполняется в том случае, если исходные данные не являются временными рядами;

5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).

Общий вид нормальной линейной модели парной регрессии в матричной форме:

Y= X* β+ ε,

где

– случайный вектор-столбец значений результативной переменной размерности n x 1;

– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;

– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;

– случайный вектор-столбец ошибок модели регрессии размерности n x 1.

Условия построения нормальной линейной модели парной регрессии, записанные в матричной форме:

1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии βi;

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:;

3) третье и четвёртое условия можно записать через ковариационную матрицы случайных ошибок нормальной линейной модели парной регрессии:

где G2 – дисперсия случайной ошибки модели регрессии ε;

In – единичная матрица размерности n x n.

Определение. Ковариацией называется показатель тесноты связи между переменными х и у, который рассчитывается по формуле:

где

– среднее арифметическое значение произведения факторного и результативного признаков;

Основными свойствами показателя ковариации являются:

а) ковариация переменной и константы равна нулю, т. е. cov(x,C)=0 (C=const);

б) ковариация переменной с самой собой равна дисперсии переменной, т. е. Cov(ε,ε)=G2(ε). По этой причине на диагонали ковариационной матрицы случайных ошибок нормальной линейной модели парной регрессии располагается дисперсия случайных ошибок;

4) случайная ошибка модели регрессии подчиняется нормальному закону распределения: εi~N(0, G2).

11. Критерии оценки неизвестных коэффициентов модели регрессии

В ходе регрессионного анализа была подобрана форма связи, которая наилучшим образом отражает зависимость результативной переменной у от факторной переменной х:

y=f(x).

Необходимо оценить неизвестные коэффициенты модели регрессии β0…βn. Для определения оптимальных коэффициентов модели регрессии возможно применение следующих критериев:

1) критерий суммы квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β (рассчитанных на основе функции регрессии f(x)):

Данный критерий определения оптимальных коэффициентов модели регрессии получил название метода наименьших квадратов или МНК. К основным преимуществам данного метода относятся:

а) все расчёты сводятся к механической процедуре нахождения коэффициентов;

б) доступность полученных математических выводов.

Недостаток метода наименьших квадратов заключается в излишней чувствительности оценок к резким выбросам, встречающимся в исходных данных.

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам:

Суть минимизации функционала наименьших квадратов F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β была бы минимальной;

2) критерий суммы модулей отклонений наблюдаемых значений результативной переменной у от теоретических значений β (рассчитанных на основе функции регрессии f(x)):

Главное преимущество данного критерия заключается в устойчивости полученных оценок к резким выбросам в исходных данных, в отличие от метода наименьших квадратов.

К недостаткам данного критерия относятся:

а) сложности, возникающие в процессе вычислений;

б) зачастую большим отклонениям в исходных данных следует придавать больший вес для уравновешивания их в общей сумме наблюдений;

в) разным значениям оцениваемых коэффициентов β0…βn могут соответствовать одинаковые суммы модулей отклонений.

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал Fпо данным параметрам:

Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β была бы минимальной;

3) критерий, имеющий вид:

где g – это мера или вес, с которой отклонение (yi-f|xi,β|) входит в функционал F. В качестве примера веса g можно привести функцию Хубера, которая при малых значениях переменной х является квадратичной, а при больших значениях х – линейной:

где с – ограничения функции.

Данный критерий определения наилучших оценок коэффициентов модели регрессии β0…βn является попыткой объединения достоинств двух предыдущих критериев. Основное преимущество данного критерия заключается в том, что оценки неизвестных коэффициентов, найденные с его помощью, являются более устойчивыми к случайным выбросам в исходных данных, чем оценки, полученные методом наименьших квадратов.

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам:

Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений ỹ с учётом заданных весов g была бы минимальной.

12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова

Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели.

Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид:

Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.