Юрий Мизун - Тайны мирового разума и ясновидение Страница 11

Тут можно читать бесплатно Юрий Мизун - Тайны мирового разума и ясновидение. Жанр: Религия и духовность / Эзотерика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Юрий Мизун - Тайны мирового разума и ясновидение

Юрий Мизун - Тайны мирового разума и ясновидение краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Юрий Мизун - Тайны мирового разума и ясновидение» бесплатно полную версию:
На основании результатов современной науки, анализа источников различных эпох (включая Биб­лию), в книге дается доступное объяснение явлений парапсихологии, жизни после смерти, телепатии, яс­новидения, души и бессмертия. Авторы рассматрива­ют фундаментальные в единой картине Мира поня­тия информационно-биологического поля Вселенной, Мирового разума, Бога.Книга содержит в себе более 70 практических упражнений, позволяющих каждому прикоснуться к тайнам бытия…

Юрий Мизун - Тайны мирового разума и ясновидение читать онлайн бесплатно

Юрий Мизун - Тайны мирового разума и ясновидение - читать книгу онлайн бесплатно, автор Юрий Мизун

Электронная проводимость осуществляется электронами. Она реализуется в металлах, а также в газах, где электроны имеют возможность двигаться под действием внешних причин (электрического поля). Это имеет место в верхних слоях зем­ной атмосферы — ионосфере.

Ионная проводимость реализуется движениями ионов. Она имеет место в жидких электролитах. Имеется третья раз­новидность проводимости. Она возникает в результате разры­ва валентной связи. При этом появляется вакантное место с от­сутствующей связью. Там, где отсутствуют электронные связи, образуется пустота, ничто, дырка. Так в кристалле полупро­водника возникает дополнительная возможность для переноса электрических зарядов потому, что образуются дырки. Эта про­водимость получила название дырочной. Так, полупроводни­ки обладают и электронной, и дырочной проводимостью.

Изучение свойств полупроводников показало, что эти ве­щества сближают живую и неживую природу. Что в них напо­минает свойства живого? Они очень чувствительны к действию внешних факторов, под их влиянием изменяют свои электро­физические свойства. Так, при повышении температуры элект­рическая проводимость неорганических и органических полу­проводников очень сильно увеличивается. У металлов в этом случае она уменьшается. На проводимость полупроводников оказывает влияние свет. Под его действием на полупроводни­ке возникает электрическое напряжение. Значит, происходит превращение энергии света в энергию электрическую (солнеч­ные батареи). Полупроводники реагируют не только на свет, но и на проникающую радиацию (в том числе и на рентгенов­ское излучение). На свойства полупроводников влияют давле­ние, влажность, химический состав воздуха и т.д. Аналогич­ным образом мы реагируем на изменение условий во внешнем мире. Под действием внешних факторов меняются биопотен­циалы тактильных, вкусовых, слуховых, зрительных анализа­торов.

Дырки являются носителями положительного электричес­кого заряда. Когда объединяются электроны и дырки (рекомбинируют), то заряды исчезают, а точнее нейтрализуют друг друга. Ситуация меняется в зависимости от действия внешних факторов, например, температуры. Когда валентная зона це­ликом заполнена электронами — вещество является изолято­ром. Таким является полупроводник при температуре —273 гра­дуса С (нулевая температура по Кельвину). В полупроводни­ках действуют два конкурирующих процесса: объединение (ре­комбинация) электронов и дырок и их генерация за счет тер­мического возбуждения. Электропроводность полупроводников определяется соотношением между этими процессами.

Электрический ток зависит от количества переносимых за­рядов и от скорости этого переноса. В металлах, где проводи­мость является электронной, скорость переноса невелика. Эту скорость называют подвижностью. Подвижность зарядов (в дырке) в полупроводниках значительно больше, чем в метал­лах (проводниках). Поэтому у них даже при относительно малом числе носителей зарядов проводимость может быть существен­ней.

Полупроводники можно образовать и другим способом. В вещество можно внести атомы других элементов, у которых уровни энергии расположены в запрещенной зоне. Эти внесен­ные атомы являются примесями. Так можно получить вещест­во — полупроводник с примесной проводимостью. Провод­ники с примесной проводимостью широко используются как преобразователи первичной информации, поскольку их про­водимость зависит от многих внешних факторов (температу­ры, интенсивности и частоты проникающего излучения).

В организме человека имеются вещества которые облада­ют и примесной проводимостью. Одни примесные вещества при их введении в кристаллическую решетку поставляют электро­ны в зону проводимости. Поэтому их называют донорами. Другие примеси захватывают электроны из валентной зоны, то есть образуют дырки. Их называют акцепторами.

В настоящее время установлено, что в живом веществе име­ются атомы и молекулы как доноры, так и акцепторы. Но живое вещество обладает и такими свойствами, которых нет у органи­ческих и неорганических полупроводников. Это свойство — очень малые значения энергии связи. Так, для гигантских биоло­гических молекул энергия связи составляет всего несколько элек­трон-вольт, тогда как энергия связи в растворах или жидких крис­таллах находится в пределах 20—30 эВ.

Это свойство очень принципиально, поскольку позволя­ет обеспечить высокую чувствительность. Проводимость осу­ществляется электронами, которые переходят от одной моле­кулы к другой благодаря туннельному эффекту. В белковых и других биологических объектах очень высокая подвижность зарядоносителей. В системе углеродно-кислородных и водородно-азотных связей электрон (возбужденный) благодаря тун­нельному эффекту перемещается по всей системе белковой мо­лекулы. Поскольку подвижность таких электронов очень вы­сокая, это обеспечивает высокую проводимость белковой сис­темы.

В живом организме реализуется и ионная проводимость. Образованию и разделению ионов в живом веществе способст­вует наличие воды в белковой системе. От него зависит ди­электрическая постоянная белковой системы. Носителями заря­дов в этом случае являются ионы водорода — протоны. Толь­ко в живом организме все виды проводимости (электронная, дырочная, ионная) реализуются одновременно. Соотношение между разными проводимостями меняется в зависимости от ко­личества воды в белковой системе. Чем меньше воды, тем мень­ше ионная проводимость. Если белки высушены (воды в них нет), то проводимость осуществляют электроны.

Вообще влияние воды не только в том, что она является источником ионов водорода (протонов) и таким образом обес­печивает возможность ионной проводимости. Вода играет бо­лее сложную роль в изменении общей проводимости. Дело в том, что вода является примесью —донором. Она поставляет электроны (каждый атом водорода разрывается на ядро, то есть протон и один орбитальный электрон). В результате электро­ны заполняют дырки, поэтому уменьшается дырочная прово­димость. Она уменьшается в миллион раз. В дальнейшем эти электроны передаются белкам, и положение восстанавливает­ся, но не полностью. Общая проводимость после этого все же остается в 10 раз меньше, чем до добавления воды.

Можно добавить к белковым системам не только донор (воду), но и акцептор, который приводил бы к увеличению чис­ла дырок. Установлено, что таким акцептором является, в част­ности, хлоранил — вещество, содержащее хлор. В результате дырочная проводимость увеличивается настолько, что общая проводимость белковой системы растет в миллион раз.

Нуклеиновые кислоты также играют важную роль в жи­вом организме. Несмотря на то, что их структура, водородные связи и т.д. отличаются от таковых и у биологических систем, имеются вещества (небиологические) с принципиально подоб­ными электрофизическими свойствами. В частности, таким ве­ществом является графит. Энергия связи у них так же, как и у белков, мала, а удельная проводимость велика, хотя и на не­сколько порядков меньше, чем у белков. Подвижность элек­троносителей, от которой зависит проводимость, у аминокис­лот меньше, чем у белков. Но электрофизические свойства ами­нокислот в целом принципиально такие же, как и свойства бел­ков.

Но аминокислоты в составе живого организма обладают и свойствами, которыми белки не обладают. Это очень важ­ные свойства. Благодаря им механические воздействия в них превращаются в электричество. Это свойство вещества в физи­ке называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к об­разованию электричества (термоэлектричество). То и другое свойство аминокислот определяется наличием в них воды. Ясно, что указанные свойства меняются в зависимости от количест­ва воды. Использование этих свойств в организации и функци­онировании живого организма очевидно. Так, на зависимости проводимости от освещенности (фотопроводимость) основа­но действие палочек зрительной сетчатки. Но молекулы жи­вых организмов обладают и электронной проводимостью, как и металлы.

Электрофизические свойства белковых систем и нуклеи­новых молекул проявляются только в динамике, только в жи­вом организме. С наступлением смерти электрофизическая ак­тивность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей (ионов и электронов и др.). Можно не сомневаться, что именно в электрофизичес­ких свойствах живого вещества заложена возможность быть живым. Об этом Сент-Дьерди писал так: "Я глубоко убежден, что мы никогда не сможем понять сущность жизни, если огра­ничимся молекулярным уровнем. Ведь атом — это система электронов, стабилизируется ядром, а молекулы не что иное, как атомы, удерживаемые вместе валентными электронами, то есть электронными связями".

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.