Виталий Тихоплав - Идущие по пустыне: время Страница 4
- Категория: Религия и духовность / Эзотерика
- Автор: Виталий Тихоплав
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 78
- Добавлено: 2018-12-21 11:37:08
Виталий Тихоплав - Идущие по пустыне: время краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Виталий Тихоплав - Идущие по пустыне: время» бесплатно полную версию:Перед вами продолжение книги «Идущие по пустыне». Идея «хождений по пустыне» берет истоки в библейских текстах. Традиционно ее связывают со стремлением цивилизации выйти на новый уровень развития, постичь себя и свое бытие.Книга «Идущие по пустыне: время» написана под руководством свыше. В ее основу легли многочисленные беседы авторов с представителем другого измерения, высшим существом – Аструсом. Отвечая на вопросы ученых в терминах земной науки, Аструс рассказывает о рождении Вселенной, об экспериментах со временем и об энергиях в организме человека. На страницах книги вас ждет множество новых неизвестных науке знаний, в том числе касающихся таких категорий как пространство, время, материя, энергия, информация.
Виталий Тихоплав - Идущие по пустыне: время читать онлайн бесплатно
В том и в другом случае основными свойствами самоорганизующихся систем являются: открытость, необратимость, неравновесность, нелинейность и диссипативность.
Свойства самоорганизующихся систем
Открытость системыОткрытые системы – это системы, которые способны постоянно обмениваться веществом (энергией, информацией) с окружающей средой и обладать как «источниками» – зонами подпитки системы энергией окружающей среды, так и «стоками» – зонами рассеяния, «сброса» энергии вовне.
Действие «источников» (притока энергии извне) способствует наращиванию структурной неоднородности данной системы, а действие «стоков» (сброс энергии вовне) приводит к сглаживанию структурных неоднородностей в системе.
Приток и сток обычно носят объемный характер, то есть происходят в каждой точке данной системы. Например, во всех компонентах биологического организма (ткани, органы, клетки и т. д.) происходит обмен веществ, приток и отток вещества (с помощью кровеносных сосудов, эндокринной и других систем). Постоянный приток (и сток) вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний.
Способность живых организмов поддерживать на определенном уровне состояние своего внутреннего порядка есть не что иное, как борьба с повышением энтропии, или борьба за свое существование. Живые организмы (клетка, сообщество людей, город и т. д.) не только открытые системы, но они и существуют только потому, что открытые. Их питают потоки энергии и вещества, которые поступают из внешнего мира. Так, например, закрытую систему «кристалл» можно изолировать, но если изолировать клетку или город от внешнего мира, они погибнут.
Открытые системы – это системы необратимые; и в них важен фактор времени.
НеобратимостьПроцессы могут быть обратимые и необратимые. Как трактует Википедия, обратимый процесс (то есть равновесный) – это термодинамический процесс, который может проходить как в прямом, так и в обратном направлении через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.
Необходимое условие обратимости термодинамического процесса – его равновесность, то есть всякий обратимый процесс всегда является равновесным, или квазистатическим. Однако не всякий равновесный процесс обязательно обратим (например, квазистатический процесс равномерного движения тела по горизонтальной шероховатой поверхности под действием взаимно уравновешивающихся сил тяги и трения – процесс необратимый).
Характерная особенность обратимых процессов – их медленность: процесс должен быть настолько медленным, чтобы участвующие в процессе тела успевали в каждый момент времени оказываться в состоянии равновесия, соответствующего имеющимся в этот момент внешним условиям. То есть обратимый процесс – это непрерывная последовательность равновесных состояний.
В системе тел, находящихся в равновесии, без внешнего вмешательства никаких процессов происходить не может, то есть с помощью тел, находящихся в тепловом равновесии, нельзя произвести никакой работы, т. к. работа связана с механическим движением, то есть с переходом внутренней энергии в кинетическую энергию. Стоит подчеркнуть еще раз, что невозможно получить работу за счет энергии тел, находящихся в тепловом равновесии.
На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему. Обратимые процессы – это идеализация реальных процессов.
Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая – способ его проведения.
Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния (Википедия).
По существу, все процессы в макросистемах являются необратимыми, а все необратимые процессы – неравновесными. Все процессы, сопровождающиеся трением, а также явления диффузии и растворения, теплопроводность, вязкое течение – необратимые. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.
Например, ваза падает, разбиваясь на осколки, но самопроизвольно разбившаяся ваза восстановиться из осколков не может. Этот процесс можно наблюдать, если, предварительно засняв падение на пленку, просмотреть ее в обратном направлении, но никак не в действительности.
Так же тепло самопроизвольно переходит от более нагретого тела к холодному, а обратный процесс, как известно, невозможен, то есть процесс необратим. Тепловые процессы вообще являются необратимыми.
В замкнутых системах необратимые процессы всегда сопровождаются возрастанием энтропии, что является критерием необратимого процесса.
В открытых системах, которые могут обмениваться энергией или веществом с окружающей средой, при необратимом процессе энтропия системы, которая складывается из полного производства ее в системе и изменения из-за вытекания (или втекания) через поверхность системы, может оставаться постоянной или даже убывать.
НеравновесностьТермодинамическая система может находиться в равновесном или в неравновесном состоянии.
Как трактует Википедия, термодинамическое равновесие – это состояние системы, при котором остаются неизменными по времени макроскопические параметры (температура, давление, объем, энтропия) в условиях изолированности от окружающей среды. В общем-то, эти величины не являются постоянными, они флуктуируют (колеблются) возле своих средних значений. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Примером равновесной закрытой структуры являются кристаллы.
Длительное время в состоянии равновесия могут находиться лишь закрытые системы, не имеющие связей с внешней средой, тогда как для открытых систем равновесие может быть только мигом в процессе непрерывных изменений. Равновесные системы не способны к развитию и самоорганизации, поскольку подавляют отклонения от своего стационарного состояния, тогда как развитие и самоорганизация предполагают качественное его изменение.
Большинство реальных систем являются неравновесными. Например, возможность подпитки и сброса энергии позволяет организму человека (открытой системе) адаптироваться к постоянно изменяющимся внешним условиям. А это есть не что иное, как неравновесность.
«Неравновесность можно определить как состояние открытой системы, при котором происходит изменение ее макроскопических параметров, то есть ее состава, структуры и поведения» [4]. В неравновесных системах происходят изменения потоков материи, энергии или фаз.
Неравновесность, неустойчивость открытых систем порождается постоянной борьбой двух тенденций. Первая связана с притоком энергии извне, благодаря которому в организме непрерывно идут пластические процессы, процессы роста, образования сложных веществ, из которых состоят клетки и ткани. Вторая тенденция связана с обратным процессом разрушения, со сбросом энергии вовне. Всякая деятельность человека связана с расходованием энергии. Даже во время сна многие органы (сердце, легкие, дыхательные мышцы) расходуют значительное количество энергии.
Если побеждает первая тенденция, то открытая система становится самоорганизующейся системой, а если доминирует вторая – открытая система рассеивается, превращаясь в хаос.
А когда эти тенденции примерно равны друг другу, тогда в открытых системах ключевую роль могут играть флуктуационные процессы[7].
Дело в том, что все сложные системы состоят из подсистем, которые непрестанно флуктуируют. И если в классической науке флуктуация – случайное отклонение мгновенного значения от среднего – быстро рассасывается, то в синергетике флуктуации при определенных условиях вырастают до масштабов системы и могут послужить началом образований новой структуры. То есть флуктуация может стать настолько сильной, что существовавшая организация разрушается. В системе могут спонтанно возникать новые типы структур, самопроизвольно возникать новые динамические состояния.
Словом, термодинамика неравновесных процессов изучает незамкнутые системы, которые в результате внутренних коллективных сил и внешних воздействий оказываются в состояниях, далеких от равновесных.
Все необратимые процессы происходят до тех пор, пока не установится равновесие системы, а это свидетельствует о том, что работа совершается системой только в том случае, пока ею не достигнуто равновесное состояние. Неравновесные системы, не получая дополнительную энергию, не могут длительное время сохранять свое состояние.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.