Фёдор Шкруднев - Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I Страница 5
- Категория: Религия и духовность / Эзотерика
- Автор: Фёдор Шкруднев
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 11
- Добавлено: 2018-12-21 13:27:09
Фёдор Шкруднев - Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Фёдор Шкруднев - Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I» бесплатно полную версию:Этот Сборник статей и публикаций автор, Ф. Д. Шкруднев, начал писать в 2012 году. Потому что он пообещал продолжить дело, начатое Русским Ученым Н. В. Левашовым, после его трагической кончины, и потому что именно этот год стал началом перехода от сложившегося людского бытия в рамках паразитической цивилизации к воссозданию истинного Человечества.Публикации охватывают широчайший спектр людского бытия от альфы до омеги и в то же время имеют совершенно четкий вектор.Материалы в общем русле несут обращение к думающим и понимающим людям, к тем, кому небезразлично будущее народа и Планеты.
Фёдор Шкруднев - Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I читать онлайн бесплатно
Ряд Фибоначчи
С историей золотого сечения косвенным образом связано имя итальянского математика, монаха Леонардо из Пизы, более известного под именем Фибоначчи. Он много путешествовал по Востоку, познакомил Европу с арабскими цифрами. В 1202 году вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи.
Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т. д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0.617, а 34: 55 = 0.618. Это отношение обозначается символом Ф. Только это отношение – 0.618: 0.382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
Как показано на рисунке 16, длина каждого сустава пальца соотносится с длиной следующего сустава по пропорции Ф. Такое же соотношение проявляется во всех пальцах рук и ног. Эта связь как-то необычна, потому что один палец длиннее другого без всякой видимой закономерности, но это все не случайно, как не случайно все в теле человека. Расстояния на пальцах, отмеченные от А до В до С до D до Е, все соотносятся друг с другом по пропорции Ф, равно как и фаланги пальцев от F до G до H.
Рис. 15. Леонардо Пизанский (Фибоначчи), итальянский математик
Рис. 16. Пропорция Ф в частях тела человека
Взгляните на этот скелет лягушки (рис. 17) и посмотрите, как каждая косточка соответствует модели пропорции Ф точно так, как и в теле человека.
Рис. 17. Пропорция Ф в скелете лягушки
Обобщенное золотое сечение
Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи – ассоциация, которая с 1963 года выпускает специальный журнал.
Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.
Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8 на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой: 2 = 1 + 1; 4 = 2 + 2… во втором – это сумма двух предыдущих чисел: 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2…
Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?
Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5. Рассмотрим числовой ряд, S + 1, первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через?S(n), то получим общую формулу?S(n) =?S(n – 1) +?S(n – S – 1).
Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 – ряд Фибоначчи, при S = 2, 3, 4 новые ряды чисел, которые получили название S-чисел Фибоначчи.
В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 – xS – 1 = 0.
Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 – знакомое классическое золотое сечение.
Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.
Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э. М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984 г.) Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п.) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S-пропорций. Это позволило автору выдвинуть гипотезу о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики – новой области науки, изучающей процессы в самоорганизующихся системах.
С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.
Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S>0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные, затем их отношения – числа рациональные. И лишь позже, после открытия пифагорейцами несоизмеримых отрезков, на свет появились иррациональные числа.
Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа: 10, 5, 2, из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.
Своего рода альтернативой существующим способам счисления выступает новая, иррациональная, система, в качестве первоосновы начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения). Через него уже выражаются другие действительные числа.
В такой системе счисления любое натуральное число всегда представимо в виде конечной – а не бесконечной, как думали ранее(!) – суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.
Принципы формообразования в природе
Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах: рост вверх или расстилание по поверхности земли и закручивание по спирали.
Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.
Рис. 18. Спираль Архимеда
Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.
Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно.
Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т. д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».
Рис. 19. Ряд Мандельборта
Золотая спираль тесно связана с циклами. Современная наука о хаосе изучает простые циклические операции с обратной связью и порожденные ими фрактальные формы, неизвестные ранее. Рисунок 19 показывает известный ряд Мандельброта – страницу из словаря бесконечности индивидуальных паттернов, называемых юлианскими рядами. Некоторые ученые связывают ряд Мандельброта с генетическим кодом клеточных ядер. Последовательное увеличение сечений раскрывает изумительные по своей художественной сложности фракталы. И тут тоже присутствуют логарифмические спирали! Это тем более важно, что и ряд Мандельброта, и юлианские ряды не являются изобретением человеческого разума. Они возникают из области первообразов Платона. Как сказал врач Р. Пенроуз, «они подобны горе Эверест».
Жалоба
Напишите нам, и мы в срочном порядке примем меры.