Дональд Бокс - Сущность технологии СОМ. Библиотека программиста Страница 30

Тут можно читать бесплатно Дональд Бокс - Сущность технологии СОМ. Библиотека программиста. Жанр: Компьютеры и Интернет / Программирование, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Дональд Бокс - Сущность технологии СОМ. Библиотека программиста

Дональд Бокс - Сущность технологии СОМ. Библиотека программиста краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Дональд Бокс - Сущность технологии СОМ. Библиотека программиста» бесплатно полную версию:
В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.

Дональд Бокс - Сущность технологии СОМ. Библиотека программиста читать онлайн бесплатно

Дональд Бокс - Сущность технологии СОМ. Библиотека программиста - читать книгу онлайн бесплатно, автор Дональд Бокс

// which interface is desired?

// какой интерфейс требуется?

const IID *piid;

// null on input, will contain the pointer on output

// на входе нуль, на выходе будет содержать указатель

[iid_is(piid)] IUnknown *pItf;

// will contain the HRESULT from QueryInterface on output

// на выходе будет содержать HRESULT от QueryInterface

HRESULT hr;

}

MULTI_QI;

Так как клиент может запрашивать более чем один указатель интерфейса на новый объект, он более не нуждается в явном вызове QueryInterface, если ему требуется более чем один тип указателей интерфейса. Поскольку эти вызовы QueryInterface будут сделаны СОМ от имени клиента по время выполнения внутри процесса объекта класса, более не потребуется никаких обменов данными между клиентом и объектом. Отметим, что каждый из указателей интерфейса, возвращенных CoCreateInstanceEx , будет указывать на один и тот же объект. СОМ не поддерживает внутреннего режима создания нескольких экземпляров за одно обращение.

После постижения структуры MULTI_QI понять определение CoCreateInstanceEx уже нетрудно:

HRESULT CoCreateInstanceEx( [in] REFCLSID rclsid,

// what kind of object? – какого сорта объект?

[in] IUnknown *pUnkOuter,

// for aggregation – для агрегирования

[in] DWORD dwClsCtx,

// locality? – размещение?

[in] COSERVERINFO *pcsi,

// host/security info – информация о хосте/безопасности

[in] ULONG cmqi,

// how many interfaces? – сколько интерфейсов?

[out, size_is (cmqi)] MULTI_QI *prgmq

// where to put itfs – куда разместить интерфейсы );

Если все запрошенные интерфейсы доступны в новом объекте, то CoCreateInstanceEx возвращает S_OK. Если хотя бы один (но не все) из запрошенных интерфейсов недоступен, то CoCreateInstanceEx возвратит CO_S_NOTALLINTERFACES, индицируя частичный успех. Затем вызывающий объект должен исследовать индивидуальные HRESULT в каждой структуре MULTI_QI, чтобы определить, какие интерфейсы были доступны, а какие – нет. Если CoCreateInstanceEx не может создать объект или ни один из запрошенных интерфейсов не доступен, то CoCreateInstanceEx возвращает HRESULT с кодом серьезности ошибки SEVERITY_ERROR, который сообщит, почему произошел отказ в операции.

CoCreateInstanceEx чрезвычайно эффективен в случае, когда требуются интерфейсы нескольких типов. Рассмотрим дополнительное определение интерфейса:

[object,uuid(753A8F7C-A7FF-11d0-8C30-0080C73925BA)]

interface IEgghead : IUnknown

{

import «unknwn.idl»;

HRESULT ContemplateNavel(void);

}

Имея такое определение интерфейса, клиент может привязать оба типа указателей к новому шимпанзе за одно обращение:

void CreateChimpEatBananaAndThinkAboutIt(void)

{

// declare and initialize an array of MULTI_QI's

// объявляем и инициализируем массив MULTI_QI

MULTI_QI rgmqi[2] = { { &IID_IApe, 0, 0 }, { &IID_IEgghead, 0, 0 } };

HRESULT hr = CoCreateInstanceEx( CLSID_Chimp,

// make a new chimp – создаем нового шимпанзе

0,

// no aggregation – без агрегирования

CLSCTX_ALL,

// any locality – размещение любое

0,

// no explicit host/security info

// нет явной информации о хосте и безопасности

2,

// asking for two interfaces – запрашиваем 2 интерфейса

rgmqi);

// array of MULTI_QI structs – массив структур

MULTI_QI

if (SUCCEEDED(hr)) {

// hr may be CO_S_NOTALLINTERFACES, so check each result

// hresult может быть равен CO_S_NOTALLINTERFACES,

// поэтому проверяем каждый результат

if (hr == S_OK || SUCCEEDED(rgmqi[0].hr)) {

// it is safe to blindly cast the resultant ptr to the type

// that corresponds to the IID used to request the interface

// безопасно вслепую преобразовать результирующий

// указатель к типу, соответствующему тому IID,

// который использовался при запросе интерфейса

IАре *рАре = reinterpret_cast<IApe*>(rgmqi[0].pItf);

assert(pApe);

HRESULT hr2 = pApe->EatBanana();

assert(SUCCEEDED(hr2));

pApe->Release();

}

if(hr == S_OK || SUCCEEDED(rgmqi[1].hr)) {

IEgghead *peh = reinterpret_cast<IEgghead*>(rgmqi[1].pItf);

assert(peh);

HRESULT hr2 = peh->ContemplateNavel();

assert(SUCCEEDED(hr2));

peh->Release();

}

} }

Рисунок 3.3 показывает шаги, которые предпринимаются CoCreateInstanceEx для создания нового объекта. Важно отметить, что оба результирующих указателя будут указывать на один и тот же объект. Если нужны два различных объекта, то требуются и два отдельных вызова CoCreateInstanceEx.

Использование СоСrеateInstanceЕх достаточно просто, если нужен только один интерфейс:

HRESULT CreateChimpAndEatBanana(void)

{

// declare and Initialize a MULTI_QI

// определяем и инициализируем MULTI_QI

MULTI_QI mqi = { &IID_IApe, 0, 0 };

HRESULT hr = CoCreateInstanceEx( CLSID_Chimp,

// make a new chimp – создаем нового шимпанзе

0,

// по aggregation – без агрегирования CLSCTX_ALL,

// any locality – любое расположение

0,

// no explicit host/security Info

// нет явной информации о хосте/безопасности

1,

// asking for one interface – запрашиваем один интерфейс

&mqi);

// array of MULTI_QI structs – массив структур

MULTI_QI

if (SUCCEEDED(hr))

{

IApe *pApe = reinterpret_cast<IApe*>(mqi.pItf);

assert(pApe);

// use the new object – используем новый объект

hr = pApe->EatBanana();

// release the Interface pointer

// освобождаем указатель интерфейса

pApe->Release();

}

return hr;

}

Если нужен только один интерфейс и не передается COSERVERINFO, то СОМ предусматривает несколько более удобную версию CoCreateInstanceEx, именуемую CoCreateInstance[1]:

HRESULT CoCreateInstance( [in] REFCLSID rclsid,

// what kind of object? – какой тип объекта?

[in] IUnknown *pUnkOuter,

// for aggregation – для агрегирования

[in] DWORD dwClsCtx,

// locality? – размещение?

[in] REFIID riid,

// what kind of interface – какой вид интерфейса

[out, iid_is(riid)] void **ppv);

// where to put itf – куда разместить интерфейс

Предыдущий пример становится намного проще, если применить CoCreateInstance

HRESULT CreateChimpAndEatBanana(void)

{

IАре *рАре = 0;

HRESULT hr = CoCreateInstance( CLSID_Chimp,

// make a new chimp – создаем нового шимпанзе

0,

// по aggregation – без агрегирования

CLSCTX_ALL,

// any locality – любое расположение

IID_IApe,

// what kind of itf – какой вид интерфейса

(void**)&pApe);

// where to put iff – куда поместить интерфейс

if (SUCCEEDED(hr)) {

assert(pApe);

// use the new object используем новый объект

hr = pApe->EatBanana();

// release the interface pointer

// освобождаем указатель интерфейса

pApe->Release();

}

return hr;

}

Оба предыдущих примера функционально эквивалентны. В сущности, реализация CoCreateInstance просто осуществляет внутренний вызов CoCreateInstanceEx:

// pseudo-code for implementation of CoCreateInstance API

// псевдокод для реализации API-функции

CoCreateInstance HRESULT

CoCreateInstance(REFCLSID rclsid, IUnknown *pUnkOuter, DWORD dwCtsCtx, REFIID riid, void **ppv)

{

MULTI_QI rgmqi[] = { &riid, 0, 0 };

HRESULT hr = CoCreateInstanceEx(rclsid, pUnkOuter, dwClsCtx, 0, 1, rgmqi);

*ppv = rgmqi[0].pItf;

return hr;

}

Хотя возможно выполнить запрос на удаленную активацию с использованием CoCreateInstance, отсутствие параметра COSERVERINFO не позволяет вызывающему объекту задать явное имя хоста. Вместо этого вызов CoCreateInstance и задание только флага CLSCTX_REMOTE_SERVER предписывает SCM использовать конфигурационную информацию каждого CLSID для выбора хост-машины, которая будет использоваться для активации объекта.

Рисунок 3.4 показывает, как параметры CoCreateInstanceEx преобразуются в параметры CoGetClassObject и IClassFactory::CreateInstance. Вопреки распространенному заблуждению, CoCreateInstanceEx не осуществляет внутренний вызов CoGetClassObject. Хотя между двумя этими методиками нет логических различий, реализация CoCreateInstanceEx будет более эффективной при создании одного экземпляра, так как в этом случае не будет лишних вызовов клиент-сервер, которые могли бы понадобиться, если бы была использована CoGetClassObject. Если, однако, будет создаваться большое число экземпляров, то клиент может кэшировать указатель объекта класса и просто вызвать IClassFactory::CreateInstance несколько раз. Поскольку IClassFactory::CreateInstance является всего лишь вызовом метода и не идет через SCM, он отчасти быстрее, чем вызов CoCreateInstanceEx. Порог, за которым становится более эффективным кэшировать объект класса и обходить CoCreateInstanceEx, будет изменяться в зависимости от эффективности IPC и RPC на используемых хост-машинах и сети.

Снова интерфейс и реализация

В предыдущих примерах активации со стороны клиента осуществлялись явные вызовы API-функций СОМ для активации. Часто может понадобиться много шагов для корректной связи с требуемым объектом (например, создать один тип объекта, затем запросить его для ссылки на другой объект, основанный на некоторой информации в запросе). Чтобы избавить клиентов от заботы об алгоритмах по поиску объектов или их созданию, СОМ поддерживает стандартный механизм назначения произвольных имен объектам, на которые они ссылаются. Этот механизм основан на использовании локаторных объектов (locator objects), которые инкапсулируют свой алгоритм связи, скрывая его за стандартным постоянным интерфейсом. Эти локаторы объектов формально называются моникерами и являются просто СОМ-объектами, экспортирующими интерфейс IMoniker. Интерфейс IMoniker является одним из наиболее сложных интерфейсов СОМ; тем не менее, он объявляет один метод, чрезвычайно важный для данной дискуссии, а именно BindToObject:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.