Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим Страница 12

Тут можно читать бесплатно Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим. Жанр: Компьютеры и Интернет / Прочая околокомпьтерная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим» бесплатно полную версию:
С появлением новой науки открылась удивительная возможность с точностью предсказывать, что произойдет в будущем в самых разных областях жизни. Большие данные — это наша растущая способность обрабатывать огромные массивы информации, мгновенно их анализировать и получать порой совершенно неожиданные выводы. По какому цвету покраски можно судить, что подержанный автомобиль находится в отличном состоянии? Как чиновники Нью-Йорка определяют наиболее опасные люки, прежде чем они взорвутся? И как с помощью поисковой системы Google удалось предсказать распространение вспышки гриппа H1N1? Ключ к ответу на эти и многие другие вопросы лежит в больших данных, которые в ближайшие годы в корне изменят наше представление о бизнесе, здоровье, политике, образовании и инновациях.

Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим читать онлайн бесплатно

Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - читать книгу онлайн бесплатно, автор Виктор Майер-Шенбергер

Получается, что беспорядочность не является неотъемлемой частью больших данных как таковых. Она скорее результат несовершенства инструментов, которые мы используем для измерения, записи и передачи информации. Если бы технологии вдруг стали совершенными, проблема неточности исчезла бы сама собой. Беспорядочность — не внутренняя характеристика больших данных, а объективная реальность, с которой нам предстоит иметь дело. И, похоже, она с нами надолго. Как правило, кропотливое повышение точности нецелесообразно с экономической точки зрения, поскольку польза от гораздо большего количества данных выглядит более убедительно. Происходит смещение центра внимания, как и в предыдущую эпоху, когда специалисты по сбору статистики отказались от наращивания размеров выборки в пользу увеличения случайности. Теперь же мы готовы мириться с незначительными неточностями в обмен на дополнительные данные.

В рамках проекта Billion Prices Project[51] можно найти занимательный пример. Каждый месяц американское Бюро статистики труда публикует индекс потребительских цен (ИПЦ), который используется для расчета уровня инфляции. Эти цифры крайне важны для инвесторов и компаний. Федеральная резервная система учитывает ИПЦ при решении вопроса о повышении или понижении процентных ставок. Основной оклад компаний увеличивается с поправкой на инфляцию. Федеральное правительство учитывает величину оклада при расчете пособий (таких как пособие по социальному обеспечению), а также процента, выплачиваемого по некоторым облигациям.

Чтобы получить эти цифры, сотни сотрудников бюро по телефону, факсу или лично связываются с магазинами и офисами в 90 городах по всей территории США. В итоге они формируют отчет из 23 000 цен на все товары и услуги — от помидоров до такси. На это уходит около 250 миллионов долларов США в год. В такую сумму обходятся однородные, понятные и упорядоченные данные. А к моменту публикации они успевают устареть на несколько недель.

Как показал финансовый кризис 2008 года, такое отставание может быть непростительным. Ответственным лицам нужно быстрее получать показатели инфляции, чтобы действовать эффективнее. Но с традиционными методами, которые сосредоточены на сборе выборок и придают большое значение точности, это невозможно.

В ответ на это два экономиста из Массачусетского технологического института (MТИ), Альберто Кавелло и Роберто Ригобон, предложили альтернативу — взять курс на большие данные, отличающиеся гораздо большей беспорядочностью. Используя программное обеспечение для сканирования веб-страниц, они ежедневно собирают полмиллиона цен на товары. Эти данные беспорядочны, и не все собранные точки данных легко сопоставимы. Но, объединив собранные большие данные с глубоко продуманными системами анализа, в рамках проекта удалось обнаружить дефляционные колебания цен, последовавшие сразу за банкротством инвестиционного банка Lehman Brothers в сентябре 2008 года. Те же, кто привык ориентироваться на официальные данные ИПЦ, смогли увидеть это только в ноябре.

Проект МТИ вырос до пяти миллионов продуктов от 300 розничных торговцев в 70 странах и дал начало коммерческой компании PriceStats, которая используется банками и другими заинтересованными лицами для принятия взвешенных экономических решений. Безусловно, полученные цифры требуют осторожного истолкования и лучше демонстрируют тенденции в области ценообразования, чем точные цены. Но поскольку в данном случае сведений о ценах гораздо больше и они поступают в режиме реального времени, это дает ответственным лицам значительное преимущество.

Беспорядочность в действии

Во многих общественных и технологических областях мы склоняемся в пользу беспорядочности, а не точности. Рассмотрим классификацию контента. На протяжении веков люди разрабатывали таксономии и индексы для хранения и извлечения материалов. Такие иерархические системы всегда были несовершенными, и это подтвердит каждый, кто не понаслышке знаком с библиотечной картотекой. В мире малых данных эти системы были достаточно эффективны. Однако стоило увеличить масштаб на много порядков — и эти системы, в которых все якобы идеально размещено, разваливаются. На сайте для обмена фотографиями Flickr в 2011 году хранилось более шести миллиардов фотографий почти от ста миллионов пользователей. Было бы бесполезно пытаться пометить каждую из фотографий в соответствии со стандартными категориями. Разве среди них найдется категория «Кошки, похожие на Гитлера»?

На смену понятным таксономиям и, как предполагается, совершенным классификациям приходят новые механизмы — более беспорядочные, зато гораздо более гибкие. Они легче адаптируются к миру, который непрерывно развивается и изменяется. Загружая фотографии на сайт Flickr, мы добавляем к ним теги, то есть назначаем любое количество текстовых меток, и используем их для упорядочения и поиска материала. Пользователи создают и добавляют теги по своему усмотрению. Нет единой стандартизированной, предопределенной иерархии, классификации или таксономии, которых следует придерживаться. Чтобы добавить новый тег, достаточно ввести его. Добавление тегов фактически стало стандартом классификации веб-контента, который используется на сайтах социальных сетей, таких как Facebook, а также в блогах и на прочих ресурсах. Благодаря этому стандарту стало гораздо удобнее бороздить просторы веб-контента, особенно нетекстового (изображений, видео, музыки), для которого поиск по словам не подходит.

Конечно, в тегах возможны опечатки. Такие ошибки привносят неточность (не в сами данные, а только в их порядок), а это наносит удар по традиционному способу мышления, основанному на точности. Но взамен беспорядочности того, как устроены наши коллекции фотографий, мы получаем гораздо больший спектр меток и, соответственно, более широкий доступ к своим фотографиям. Мы можем объединять поисковые теги для фильтрации своих фотографий такими способами, которые были недоступны прежде. Принять неточность, присущую методу меток, — значит принять естественную беспорядочность окружающего мира. Это лекарство от более точных систем, которые пытаются навязать суматошному миру ложную стерильность, делая вид, что все на свете можно четко систематизировать. Вокруг еще столько всего, что не укладывается в рамки такой философии!

Многие популярнейшие сайты не скрывают свою симпатию к неточности. Взглянув на значок Twitter или на кнопку «Нравится» на веб-странице Facebook, можно увидеть количество других людей, которые их нажали. Пока числа небольшие, например 63, каждое нажатие идет в расчет. Но при больших количествах нажатий указывается лишь приблизительное количество, например 4 тысячи. Нельзя сказать, что система не знает точных цифр. Просто с увеличением масштаба точность уже не играет большой роли. Кроме того, числа могут меняться так быстро, что на момент отображения будут уже неактуальны. Такого же принципа придерживается почтовая служба Gmail компании Google, в которой время последних сообщений указывается с точностью до минуты, например «11 минут назад», но более длительные интервалы округляются, например «2 часа назад».

Область бизнес-аналитики и аналитического программного обеспечения долгое время строилась вокруг обещания клиентам «единой версии правды» — популярного выражения среди поставщиков технологий в этих областях в 2000-х годах. Руководители произносили эту фразу без иронии. Некоторые так поступают и до сих пор. Под этой фразой подразумевается, что все, кто получает доступ к информационно-технологическим системам компании, могут использовать одни и те же данные. А значит, отделам маркетинга и продаж не придется спорить, чьи данные о количестве клиентов и продаж правильнее, еще до начала встречи. Исходя из сказанного, их интересы могут во многом совпадать, если факты излагаются единообразно.

Идея «единой версии правды» кардинально меняется. И суть не в том, чтобы согласиться с тем, что единой правды не существует. Важно понять, что гнаться за ней — неблагодарное дело. Для того чтобы пожинать плоды освоения масштабных данных, нужно признать, что беспорядочность здесь — в порядке вещей, и не нужно тратить лишнюю энергию на то, чтобы от нее избавиться.

Мы даже можем наблюдать, как характерные черты неточности проникают в одну из наименее терпимых к ней областей — проектирование баз данных. Для обычных механизмов системы управления базами данных (СУБД) требуются точные и хорошо структурированные данные, которые не просто хранятся, а разбиваются на «записи» с полями. Каждое поле содержит информацию конкретного типа и длины. Например, в числовое поле длиной в семь цифр невозможно записать сумму, равную десяти миллионам и более. А в поле для телефонных номеров не получится ввести «недоступен». Приспособиться к таким изменениям можно, только изменив структуру базы данных. Мы все еще воюем с этими ограничениями на компьютерах и смартфонах, когда программное обеспечение отказывается принимать данные, которые мы хотим ввести.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.