Коллектив авторов - Общая вирусология с основами таксономии вирусов позвоночных Страница 16
- Категория: Детская литература / Детская образовательная литература
- Автор: Коллектив авторов
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: -
- Страниц: 33
- Добавлено: 2019-02-06 12:34:23
Коллектив авторов - Общая вирусология с основами таксономии вирусов позвоночных краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Коллектив авторов - Общая вирусология с основами таксономии вирусов позвоночных» бесплатно полную версию:Учебник представляет собой систематизированное изложение общей вирусологии, методов диагностики вирусных инфекций и таксономии вирусов позвоночных, что соответствует пунктам профессиональной компетентности ПК-1 (демонстрирует базовые представления о разнообразии биологических объектов, понимание значения биоразнообразия для устойчивости биосферы) и ПК-2 (использует методы наблюдения, описания, идентификации, классификации, культивирования биологических объектов) федерального образовательного стандарта высшего профессионального образования по направлению подготовки 020400 – Биология (степень – «Бакалавр», «Магистр»). В учебнике представлены общие сведения о истории вирусологии, химическом составе генетике репродукции вирусов, выделении и очистки вирусных препаратов, методах диагностики вирусных инфекций, таксономии вирусов позвоночных.
Коллектив авторов - Общая вирусология с основами таксономии вирусов позвоночных читать онлайн бесплатно
Вирусные белки, которые стимулируют репликативное состояние клетки, обычно инактивируют членов семейства Rb – P105Rb, p107, и p130. Инактивация Rb предотвращает репрессию клеточного деления и разрешает E2F-опосредованную транскрипцию, что стимулирует выражение многочисленных клеточных белков, требуемых для S-фазы, включая ДНК-полимеразу α, тимидинкиназу, рибонуклеотидредуктазу и тимидилатсинтазу. Некоторые вирусные белки, например, Е1А аденовирусов и Е7 папиломавирусов человека, непосредственно связывают Rb белки и ингибируют их функцию, и таким образом активируют E2F. Другие вирусные белки регулируют активность циклин-зависимых киназ (Cdks), которые катализируют фосфорилирование Rb, приводя к активации E2F и транскрипции E2F-регулируемых генов. Ряд вирусных белков могут косвенно влиять на регуляцию клеточного цикла деления. Например, E1B-55КБ и E4orf6 белки аденовирусов и E6 папиломавирусов запрещают действие транскрипционного фактора p53 через взаимодействие с CBP/p300, который является коактиватором гена p53. Отмена функции p53 приводит к уменьшенной экспрессии ингибитора клеточного деления p21 (репрессор комплекса Cdk–циклин), таким образом активируя Сdk и соответственно переход клеток в S–фазу. Точно так же, аденовирусный E1A связывает p27, который является ингибитором Сdk, нейтрализуя его эффекты. Большой T антиген обезъяньего вируса SV40 не только связывает и инактивирует Rb и p53, но и выполняет несколько функций, непосредственно требуемых для репликации ДНК вируса. Другой механизм используют средний T-антиген полиомавирусов и белок E5 папиломавирусов быка. Эти белки активируют сигнальный каскад, опосредованный рецептором фактора роста, и возможно стимулируют экспрессию регуляторной субъединицы Сdk – циклина D, таким образом стимулируя активность Сdk и фосфорилирование белков семейства Rb. Некоторые белки вирусов герпеса и гепаднавирусов по всей вероятности также стимулируют каскады сигнальных путей, активизируя внутриклеточные белки передачи сигнала NFKB, P21ras и pp60c-src.
Индукция набора клеточных репликативных белков имеет глубокие последствия на клетку-хозяина, которая насильно побуждается к репликации ДНК. Когда пролиферативный сигнал устойчиво поддерживается, например, в непермиссивных клетках, которые не способны поддерживать репликацию вирусной ДНК, клетки могут подвергнуться устойчивой трансформации. Таким образом, мало того, что многие ДНК- вирусы стимулируют статические клетки к повторным циклам деления, они также трансформируют клетки в культуре и вызывают опухоли у животных. Рассмотренная способность многих опухолеродных ДНК-вирусов стимулировать неограниченный рост клеток не является особенностью нормальной репликации вирусов, а скорее представляет собой аберрантный ответ клеток на вирусную инфекцию. В соответствии с этим, парвовирусы, неспособные стимулировать репликацию клеточной ДНК, являются одними из немногих ДНК-содержащих вирусов, которые не трансформируют клетки. Однако способность вирусов стимулировать синтез клеточной ДНК не всегда коррелирует с их способностью трансформировать клетки. Например, одни вирусы герпеса стимулируют синтез ДНК, другие нет, и, тем не менее, они фактически запрещают быстрое клеточное деление. Такие большие вирусы с их большой кодирующей емкостью способны создать надлежащую среду для репликации вирусной ДНК без активации клеточного репликативного аппарата.
Необходимость нуклеотидов для репликации ДНК. Как описано выше, для репликации парвовирусов необходимо, чтобы клетки находились в S-фазе, а папиломавирусы, полиомавирусы и аденовирусы стимулируют клетки, чтобы ввести Sфазу, требующую для синтеза ДНК большой концентрации дезоксинуклеозидтрифосфатов (дНТФ). Через воздействие на членов белковых семейств Rb и E2F, папиломавирусы и аденовирусы стимулируют синтез фермента рибонуклеотидредуктазы, который требуется для поддержания достаточного для вирусной репликации уровня дНТФ. Напротив, вирусы герпеса и поксвирусы способны реплицироваться в покоящихся клетках. Одной из причин того, что эти вирусы могут обходить требование к S-фазе является их способность кодировать ферменты для синтеза дНТФ – рибонуклеотидредуктазу и тимидинкиназу. В случаях вируса герпеса и вируса опоясывающего лишая/ветряной оспы вирусная тимидинкиназа является ключевой точкой для противовирусной химиотерапии, потому что этот вирусный фермент фосфорилирует аналоги нуклеозида, такие, как ацикловир, более эффективно, чем это делают клеточные ферменты. Преобразованные в фосфорнокислую форму эти аналоги дНТФ выборочно вредят репликации ДНК герпесвирусов.
Независимо от вида ДНК-генома единицей его репликации является так называемый репликон – единица генома, способная к автономной репликации. Репликон представляет собой нуклеотидную последовательность, расположенную между точкой начала репликации (origin или ori) и точкой окончания репликации (terminus). Процесс репликации ДНК разделен на три стадии: инициация цепи, элонгация (удлинение) цепи и терминация синтеза. Вирусы с различными видами ДНК-генома реализуют оригинальные стратегии репликации. При этом главные особенности наблюдаются при инициации синтеза.
Основные принципы репликации ДНК-геномов вирусов.
Инициация синтеза ДНК. Большинство ДНК вирусов эукариот (кроме поксвирусов) копирует свои геномы в ядре. Репликация ДНК-геномов вирусов инициируется в специфических точках ori.
В отличие от клеточных ориджинов, которые активируются один раз в течение клеточного цикла, вирусные точки ori могут срабатывать много раз в течение отдельного цикла репликации. Инициация синтеза цепи ДНК может происходить только при наличии затравки для ДНК-полимеразы. Вид затравки и способ ее образования различаются у разных вирусов и определяют своеобразие вирусных репликативных систем. Различают три основных способа инициации синтеза ДНК (смотри пункт 3.7.1.1, с. 63).
Элонгация цепи при репликации вирусных геномов принципиально не отличается от процесса синтеза клеточных ДНК. Используются ферменты, вспомогательные белки и репликационные белки, принадлежащие как клетке-хозяину, так и вирусу. Синтез ДНК, как правило, осуществляет ДНК-зависимая ДНК-полимераза α. Основным свойством синтеза является его полярность, при которой очередной нуклеотид присоединяется к 3’– концу растущей цепи. То есть направление синтеза идет от 5’– к 3’-концу, считывание – от 3’– к 5’-концу. Особенности синтеза комплементарных нитей связаны со способом инициации. На днДНК-матрице синтез идет через образование репликативной вилки (рисунок 9) или с вытеснением цепи, на онДНК матрице – по репарационному механизму.
В репликативных вилках одна нить (ведущая) копируется непрерывно в направлении от 5’– к 3’-концу. Поскольку другая нить (отстающая) должна также синтезироваться от 5’– к 3’-концу, она копируется с перерывами, многократно инициируя синтез и соединяя короткие фрагменты Оказаки. Синтез ДНК в репликативной вилке обеспечивается целым набором белков-ферментов, которые могут иметь разное происхождение. Мелкие ДНК-содержащие вирусы используют клеточные репликативные белки. Лучше всех изучена репликация полиомавируса SV40, где вовлеченные репликативные белки были идентифицированы в бесклеточной системе in vitro.
Рисунок 9 – Схема репликации ДНК с использованием репликативной вилки
Установлено, что в репликации ДНК SV40 принимают участие 10 белков. Девять из них имеют клеточное происхождение: ДНК-полимераза α (ответственна за инициацию синтеза ДНК в точке ori и синтез отстающей нити); праймаза (связана с ДНК-полимеразой и праймирует синтез фрагментов Оказаки); ДНК-полимераза d (ответственна за синтез лидирующей нити и завершение синтеза фрагментов Оказаки); пролиферативный клеточный ядерный антиген (PCNA), который связывается с ДНК-полимеразой d и формирует кольцо вокруг ДНК, увеличивая процессивность полимеразы; гетеропентамерный репликативный фактор C – RF-C (присоединяет кольцо PCNA на ДНК и стимулирует полимеразу d); RPA – онДНК-связывающий белок; РНаза H (удаляет все кроме одного рибонуклеотиды РНК-праймера); экзонуклеаза FEN-1, также известная как MF-1 (удаляет оставшейся рибонуклеотид); ДНК-лигаза I (лигирует фрагменты Оказаки); топоизомераза I и/или топоизомераза II (снимает сверхспирализацию в течение синтеза). Единственный вирусный белок, который требуется для репликации ДНК SV40 – это большой T-антиген, который обладает свойствами хеликазы и обеспечивает расплетение двунитевой структуры в репликативной вилке.
Другие вирусы сами обеспечивают почти все белки репликативной вилки. Например, фаза элонгации при репликации ДНК аденовируса в условиях in vitro обеспечивается одной аденовирусной субъединицей ДНК-полимеразы, аденовирусным однонитевым ДНК-связывающим белком, который может увеличивать процессивность полимеразы, и клеточной топоизомеразой I или II. Это простота частично связана с необычным характером репликации ДНК аденовируса, в которой отсутствует синтез отстающей цепи.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.