Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре Страница 35

Тут можно читать бесплатно Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре. Жанр: Документальные книги / Биографии и Мемуары, год 2013. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре» бесплатно полную версию:
Имя питерского математика Григория Перельмана не сходит с новостных полос. Еще бы — открытие сделал, а положенный миллион все не берет. За обсуждением денег и странностей математика как-то совсем не замеченным остался вопрос: «Так что же открыл такого великого Перельман, что это вызвало такую шумиху и столь высоко было оценено мировой общественностью?» А открытие его действительно значимо: доказана гипотеза Пуанкаре (сейчас это теорема Пуанкаре-Перельмана), справиться с которой лучшие умы не могли более 100 лет. Из этой теоремы вытекает масса удивительных выводов в космологии, квантовой механике, философии и даже религии.  

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре читать онлайн бесплатно

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре - читать книгу онлайн бесплатно, автор Олег Арсенов

-146-

Инновационная теория сразу же столкнулась и с трудными требованиями для размерности пространства, ведь ее модель математически корректна только в случае, если пространственно-временной континуум является многомерным. Это еще можно было пережить, но вскоре выяснилось, что ввод в теорию струн спина приводит к ее реализации только в десятимерном пространстве-времени, вмещающем девять пространственных измерений и одно временное. Это было очень необычно, поскольку теоретикам еще не приходилось сталкиваться с теорией, автоматически диктующей требуемую размерность. Ведь все известные уравнения механики, электродинамики и теории относительности, в принципе, справедливы для любого числа измерений. А теория суперструн непременно требовала для себя пространства-времени одной определенной размерности, причем не привычное 4-мерное пространство-время, так что 6 измерений оказались лишними.

В данной ситуации казалось, что модели суперструн суждено остаться чисто умозрительной теорией. Теоретики много лет пытались найти квантовую версию общей теории относительности, ведь соответствующие уравнения теории Эйнштейна предсказывают существование гравитационных волн, которые при квантовании превращаются в гравитоны, переносчики силы тяготения. Топологически модель гравитона представляет собой нечто, напоминающее закольцованную струну. Гравитонные закольцованные струны по идее должны легко преодолевать границы бран, например покидать нашу 3-брану и уходить в другие измерения. Но если эти странные «агенты влияния» гравитации способны на подобные «подпространственные» перемещения, то их геометрия вполне может описываться специальным классом решений теоремы Пуанкаре — Перельмана! То, что мы этого не замечаем, может лишь свидетельствовать о компактификации дополнительных измерений. Естественно, что законы этого очень странного микромира должны проявляться лишь на очень малых дистанциях, которые пока еще принципиально не наблюдаемы экспериментальной физикой. Однако есть и другие выводы из проективной топологии пространства-времени, позволяющие делать предположения

-147-

о том, как наша 3-брана, будучи многообразием теории Пуанкаре — Перельмана, эволюционирует вместе со всеми скрытыми измерениями. При этом теория предсказывала, что гравитоны должны обладать нулевой массой и двойным спином. И вот в 1970-х годах появились научные работы, в которых таинственная безмассовая частица струнной модели сопоставлялась с гравитоном! Отсюда следовало, что теория струн — это математический каркас для конструирования квантовой теории тяготения и ее основная задача — объединить все фундаментальные взаимодействия в Теории Всего.

Здесь важно понимать, почему мы не ощущаем присутствия шести или семи дополнительных пространственных измерений. Считается, что они свернуты в ультрамикроскопические клубки (компактифицированы), которые все наши измерительные инструменты, от микроскопов до сверхмощных ускорителей, не отличают от геометрических точек. Такая интерпретация стандартна, но необязательна: электроны, кварки и прочие частицы материи представлены струнами со свободными концами.

Что обещает дальнейшее развитие теории струн?

Хотя вопросов у теории суперструн пока больше, чем ответов, большинство физиков уверены, что она имеет перспективное будущее. Когда построение теории закончится, ее по праву можно будет назвать той самой Теорией Всего. Космические струны могут флуктуировать и колебаться, пересекаться и взаимодействовать между собой. Наблюдать их можно либо благодаря производимому ими эффекту гравитационных линз, отклоняющих световые лучи, идущие от далеких галактик, либо по всплескам гравитационного излучения в результате их продольных колебаний. По некоторым сценариям гравитационное излучение космических струн можно будет открыть на новых сверхчувствительных детекторах гравитационных волн.

Самым грандиозным успехом здесь была бы долгожданная единая концепция всех частиц и сил — Теория Всего. На пути к этому, конечно же, возникнут многочисленные новые модели пространства и времени (впрочем, их и сейчас более чем достаточно), способные разрешить важные загадки квантовой гравитации

-148-

и космологии. Это грандиозная цель, и, вполне возможно, для ее осуществления потребуется еще одна революция в наших представлениях о структуре физической реальности. Уже сейчас «струнные» работы привели ко многим интересным побочным результатам в математике, включая создание новых математических структур, а также инновационных идей и методов их решения. На последних конференциях, посвященных различным аспектам струнной теории, часто можно встретить физиков-теоретиков и математиков, совместно доказывающих свои гипотезы во многих областях математики, например в алгебраической геометрии.

Рис. 52. Эволюция суперструнных бран

«В 1997 году, основываясь на более ранних достижениях многих струнных теоретиков, аргентинский физик Хуан Малдасена совершил прорыв… в иногда свойственной физике манере он нашел гипотетический контекст — гипотетическую Вселенную, в которой абстрактные мечтания о голографии могут быть сделаны с использованием математики как конкретными, так и точными. По техническим причинам Малдасена изучал гипотетическую Вселенную с четырьмя большими пространственными измерениями и одним временным измерением, которая имеет постоянную отрицательную кривизну — более

-149-

многомерная версия картофельного чипса. Стандартный математический анализ обнаружил, что это пятимерное пространство-время имеет границу, которая, как и все границы, имеет на одно измерение меньше, чем пространство, которое она ограничивает: три пространственных измерения и одно временное. (Как всегда, многомерные пространства тяжело вообразить, так что если вы хотите ментальную картину, подумайте о бидоне томатного супа — трехмерный жидкий суп есть аналог пятимерного пространства-времени, тогда как двумерная поверхность бидона есть аналог четырехмерного пространства-времени. После включения дополнительных скрученных измерений, как требует теория струи, Малдасена убедительно доказал, что физика, очевидцем которой является наблюдатель, живущий внутри этой Вселенной (наблюдатель в "супе"), может быть полностью описана в терминах физики, имеющей место на границе Вселенной (физики на поверхности бидона)».

Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Теория струн предлагает и оригинальные космологические сценарии эволюции нашего Мира. Они предполагают, что Вселенная на современном этапе развития может быть заполнена космическими струнами галактических или даже метагалактических масштабов. В основе лежит идея о том, что поскольку расширение нашей Вселенной началось с планковского масштаба Большого Взрыва, то на этой стадии пространство-время было плотно заполнено обычными микроскопическими суперструнами с планковской длиной. Чтобы растянуть их до макроскопических размеров, потребовалась бы колоссальная энергия, и она нашлась естественным образом в ходе «разлета» нашего Мира. Конечно, тут за скобками остается очень интересный вопрос о том, что предшествовало появлению суперструн в сверхмикроскопическом пузырьке — зародыше нашей Вселенной. Следующий вопрос — о характере непосредственного влияния микро-мезо-макро-мега-суперструн на эволюцию Вселенной, а также изменение их физических характеристик при этом. Гипотезу мегаскопических суперструн можно привлечь и для объяснения перехода этапа равномерного расширения в ускоренное около

(adsbygoogle = window.adsbygoogle || []).push({});
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.