Математика нуждается в систематизации - Иван Деревянко Страница 3

Тут можно читать бесплатно Математика нуждается в систематизации - Иван Деревянко. Жанр: Документальные книги / Публицистика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Математика нуждается в систематизации - Иван Деревянко

Математика нуждается в систематизации - Иван Деревянко краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Математика нуждается в систематизации - Иван Деревянко» бесплатно полную версию:

В книге излагаются общие представления о теории систем, на основе которых создаются принципиально новые представления о системах в математике. Обобщая известное и собственное понимание сущности систем, автор дает им свое универсальное определение на основе гипотезы о физической картине мира. Сквозь призму собственного понимания системности и всеобщего определения систем, автор рассматривает ряд неудобных для математической науки вопросов и дает на них неожиданные ответы.

Математика нуждается в систематизации - Иван Деревянко читать онлайн бесплатно

Математика нуждается в систематизации - Иван Деревянко - читать книгу онлайн бесплатно, автор Иван Деревянко

политэкономии К. Маркса, который считал едва ли не главным своим достижением, сформулированный им метод восхождения от абстрактного к конкретному, где как раз и прослеживаются все четыре фундаментальных принципа.

Естественно, что эти принципы не могла проигнорировать и философия, претендующая на роль метанауки. Фундамент этот, видимо, был заложен еще в древности, поскольку до нас дошла классификация первооснов познания Аристотеля, который различал цель (то, ради чего), материю, форму и источник движения. Если это так, то вполне закономерно возникает вопрос о причинах разногласий между соперничающими научными школами. Вопрос этот далеко не так прост, как его трактуют наши учебники.

Мало сказать, что А. Богданов, например, не признавал абсолютной истины, а Г. Гегель верил в бога. Релятивизм одного и идеализм другого, действительно явились причинами того, что их главные труды огромной научной ценности оказались практически бесполезными, на которые модно лишь ссылаться и не более. Однако, как сейчас принято говорить, упущенная выгода столь велика, а негативные последствия этого столь значительны, что разобраться в причинах такого положения просто необходимо.

Это вроде бы и не входит в задачи данного исследования, но на самом деле без такого разбора невозможно сделать правильного выбора математического аппарата, ибо не ясны будут следующие шаги в этом направлении. Причины методологического тупика следует искать в философии, а точнее, в ее извечном, ставшем уже банальным, вопросе: что первично в реальном мире, а что — вторично.

Естественно, материалисты утверждают, что первична материя, идеалисты считают, что на первое место следует поставить идею, как исходный момент сознательной деятельности. Механицисты объясняют развитие природы и общества универсальными законами механического движения. Энергецисты сводят все явления природы к видоизменениям энергии. Это — основные философские направления, в рамках которых существует большое количество более мелких течений. До сих пор философы не могут найти компромиссного решения этому спору, негативные последствия которого трудно переоценить.

Кто же из них прав? Прежде, чем попытаться ответить на этот вопрос, рассмотрим один общеизвестный факт. Ни один процесс сознательной деятельности не может быть осуществлен, если отсутствует хотя бы один элемент. Прежде всего, нужен источник энергии, обязательна механическая основа со средствами движения, обеспечивающие обработку материального предмета. Естественно, процессом надо управлять. Этот факт говорит о том, что все авторы упомянутых течений правы.

Именно эта очевиднейшая для всех не-философов правота является причиной непримиримости идеологических противников, ибо философом никто не рождается. Прежде, чем им стать, человек испытывает совокупные воздействия некоторых условий, формирующих его мировоззрение, как правило, с каким-нибудь одним уклоном, так как эти объективно-реальные условия могут вызывать идеалистическую, материалистическую, механическую или энергетическую субъективные направленности. Но эти то условия формируются в системе, где энергия, механика, материя и сознание являются равноправными элементами. Без любого из них система существовать не будет.

Другое дело, что в количественном отношении в каждом конкретном случае эти элементы могут отличаться и, в зависимости от цели и условий, могут отличаться так сильно, что какие-то из них можно безболезненно проигнорировать. Однако это вовсе не означает их отсутствия. Следовательно, формальная правота представителей каждого из философских направлений, в сущности, оборачивается неправотой в том смысле, что каждый из них должен смириться с тем объективным фактом, что все другие его противники имеют точно такое же право на использование своих идеологических воззрений.

В общем, как теперь принято говорить, надо отказаться от имперских амбиций на безграничное распространение своих теоретических концепций на весь наш реальный мир, ограничившись лишь одной четвертой его частью, не больше и не меньше. Уступать своего не следует, но и претендовать на чужое не только безнравственно, но и бессмысленно, ибо это будет себе во вред. История нашей страны убедительно свидетельствует об этом.

Какое же отношение имеют эти рассуждения в неприемлемой для математиков форме к выбору математического аппарата? Самое непосредственное. Дело в том, что математика сама по себе мало чего стоит. Она рождена Природой и предназначена для ее совершенствования. В этом смысле весь аппарат математики должен отражать соответствующие реальности, формой существования которых предопределен выбор математических объектов. Только в этом случае чистая математика может принести реальную пользу.

Это, грубо говоря, то же самое, когда требуется, например, в цеху оптимальным образом расставить оборудование. Чтобы по много раз не перетаскивать станки с места на место, наилучший вариант ищется с помощью масштабных фишек на плане этого цеха. И если фишки не соответствуют размерам реальных станков, то нетрудно представить, к каким последствиям это приведет. Так и в математике. Если ее основы оторвать от реальной действительности, то она превратится в софистику, для которой всякие математические упражнения будут самоцелью и никакой реальной пользы не принесут.

Следовательно, время увлечения только чистой математикой должно безвозвратно уйти в прошлое. Она должна развиваться на равноправной и взаимообогощающейся основе совместно с философией, физикой и экономикой. Поэтому выбору математического аппарата, хотим мы этого или не хотим, всегда соответствует философское обоснование, где Философия выступает как связующий элемент между Природой и Математикой. Естественно, что формы этого обоснования могут быть разные — от простенькой методики проведения эксперимента до анализа методологических основ науки вообще и конкретного исследования в частности.

В данном случае имеет место последнее, поэтому оказались необходимыми такие несколько необычные по форме предварительные суждения философского плана. На основании таких философских обобщений реальной действительности можно констатировать, что математические объекты могут иметь множественную, комплексную, функциональную, (векторную) и параметрическую (тензорную) формы.

Они отражают качественно различную природу соответственно энергетической, механической, материальной и биологической сущности объектов реального мира (Природы и Общества). По аналогии со своей сущностью (реальным миром) эти формы в зависимости от обстоятельств могут рассматриваться и применяться либо изолированно друг от друга, либо в любом сочетании друг с другом (взаимодействии с одним, двумя или тремя другими).

Однако математические объекты разной формы взаимодействовать могут лишь в случае сопоставимости их единиц измерения. Именно в этом заключается задача третьего этапа системного анализа. Как же сделать сопоставимыми энергию, механические объекты, материальные предметы и интеллект, а значит, множества, функции, векторы и числовые параметры?

Анализируя причины парадоксов, обнаруживаемых в тех или иных теориях, можно прийти к выводу, что многие из них возникают в результате стремления ученых создать универсальный математический аппарат для математических объектов разной природы при слишком ограниченном наборе применяемых средств.

Поэтому не случайно этой проблемой занимаются многие исследователи, о чем убедительно свидетельствует библиография работ в этой области, приведенная в обстоятельном обзоре А. И. Орлова. Тем не менее применение математического аппарата "объектов нечисловой природы", а именно такой термин применяется для элементов пространств, не являющихся линейными, ограничено статистикой, а этого

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.