Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света Страница 11

Тут можно читать бесплатно Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света» бесплатно полную версию:
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна. Эта книга — способ совершить математическое путешествие вокруг света и узнать много нового о культурах разных народов.

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света читать онлайн бесплатно

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света - читать книгу онлайн бесплатно, автор Микель Альберти

Если считать, что результатом увеличения С(х) и уменьшения V(x) будет итоговая цена, получим параболические кривые, так как увеличение и уменьшение будут описываться производными исходных функций, V'(х) и С'(х). В случае с кривой покупателя производная положительна (С(х) возрастает), в случае с кривой продавца — отрицательна (V(х) убывает):

V(0) = В — начальная цена, предложенная продавцом. В результате получим две параболы разной кривизны, которые пересекаются в точке равновесия.

Однако мы не знаем, действительно ли участники торга рассуждают подобным образом. Быть может, они думают, что цену следует повышать или понижать обратно пропорционально разнице с исходной ценой? Если это так, то мы получим новую модель, в которой поведение продавца и покупателя описывается логарифмическими функциями — именно эти функции являются решениями дифференциального уравнения модели. Обозначив через V исходную цену, получим:

Постоянная k для покупателя положительна, для продавца — отрицательна.

Но на самом деле люди, предлагая свою цену, не вычисляют в уме подобные пропорциональные величины. Рассмотрим реальные данные, собранные автором по результатам торга с тремя продавцами, чей доход напрямую зависел от туристов.

Во всех трех случаях мы находились не на рынке, а в магазине. Я предлагал цену, не учитывая какие-то заранее обдуманные пропорции или соотношения. Ход моих рассуждений я объясню позже.

В третьем случае цены товаров были указаны на ценниках, что, как правило, служит признаком фиксированной стоимости. В моем случае цена, написанная на ценнике, равнялась 350. Не успел я спросить, действительно ли это окончательная цена, как продавщица сказала, что может сделать мне скидку.

«Какой будет скидка?» — спросил я. «Отдам за 300» — ответила продавщица.

Скидка была не слишком большой, и я понял: цены на ценниках были не окончательными, но достаточно близкими к реальным. В любом случае вещь не досталась бы мне очень дешево. Теперь настала моя очередь предложить цену. Цены ниже 200 показались мне слишком низкими, поэтому я предложил 200. Продавщица согласилась на 280. Ее предложение несколько охладило мой пыл — новая цена была всего на 20 меньше предыдущей. Я предположил, что в итоге мы сойдемся на 250, но не хотел завершать торг слишком быстро. Я предложил 230 — чуть больше, чем 225.

Продавщица предложила 260. В конце концов я сказал, что 250 — моя последняя цена. Продавщица настаивала на 260, но я не сдавался. В итоге вещь досталась мне за 250.

После торга я спросил продавщицу, какую максимальную скидку она была готова предложить. Продавщица ответила: 25 % и добавила, что такова максимальная скидка в ее магазине, а в других местах, например на рынке, скидка могла быть намного больше. Таким образом, я провел неплохую сделку: вещь стоимостью 350 досталась мне за 250. Скидка оказалась больше 28 %.

На основе этих практических результатов я составил новую математическую модель торга. В значениях, приведенных в таблице, скрыто какое-то равновесие, а также они очевидно сходятся к итоговой цене, которая устроит и покупателя, и продавца. Какому закону подчиняется это равновесие? Предложим гипотезу: каждая цена представляет собой среднее значение двух последних предложенных цен. Иными словами, если x0 — исходная цена, предложенная продавцом, x1 — первая цена, предложенная покупателем, то общий член числовой последовательности, образующейся в ходе торга, задается формулой:

Это не что иное, как среднее арифметическое двух последних цен, упомянутых в торге. Приведенное выражение очень похоже на формулу общего члена в последовательности Фибоначчи. Сравним результаты трех предыдущих торгов с этой моделью, которую будем называть моделью средней цены.

Живительное сходство. Следовательно, в туристических местах торг можно достаточно точно описать моделью средней цены. Но как определить, к какому значению стремится цена в этой модели? На какой цене сойдутся покупатель и продавец в подобных ситуациях? Рассмотрим начальные цены трех предыдущих торгов и посмотрим, что произойдет.

Что общего у этих чисел и пар начальных значений цен (45, 20), (80000, 40000) и (350, 200)? Если мы посмотрим на соответствующие графики, то заметим явное сходство.

Чтобы понять, что происходит, рассмотрим формулу общего члена в этой модели.

Предел X, к которому сходятся члены последовательности цен, определяется двумя исходными ценами — ценой продавца (x0) и ценой покупателя (x1):

Вычислим X для начальных значений в трех предыдущих примерах и покажем, к какому значению стремится итоговая цена.

Обратите внимание, что во всех трех случаях пятый член настолько близок к предельному значению, что продолжать торговаться не имеет особого смысла. Возможно, именно поэтому при торге покупатель и продавец редко меняют цену больше четырех-пяти раз. Как мы уже говорили, участники реальных торгов не руководствуются описанной моделью сознательно, но эта модель настолько близка к тому, как происходит торг в действительности, что остается только удивляться способности людей интуитивно оценивать числа в поисках равновесного значения.

Абак

Первым вычислительным устройством в истории были человеческие руки. Говоря в компьютерных терминах, руки были первым программным обеспечением в истории. На пальцах одной руки можно досчитать до 5, на пальцах двух рук — до 10, а если использовать пальцы ног, то и до 20. Но если обозначать фалангами пальцев единицы, а пальцами — степени 10, то можно досчитать до десяти миллиардов.

Впрочем, этот метод непрактичен, поэтому его никто не использует.

В различных культурах Европы и Азии руки служили не только для счета, но и для вычислений, особенно для умножения. Чтобы умножить 6 на 8 на пальцах, нужно действовать следующим образом. Сначала досчитаем до 6, разгибая пальцы на одной руке, то есть досчитаем до 5 и загнем один палец. Один палец останется загнутым, 4 — разогнутыми. Аналогичным образом досчитаем до 8 на другой руке.

Три пальца останутся загнутыми, 2 — разогнутыми. Загнутыми оказалось 1 + 3 = 4 пальца — это будут десятки. Перемножим число разогнутых пальцев: 4·2 = 8 — это будут единицы. Результат равен 40 + 8 = 48.

В этом методе сочетаются сложение в уме и простое умножение небольших чисел, меньших пяти. Говоря математическим языком, умножение чисел, меньших либо равных 10, сводится к умножению по модулю 5. Эта система используется в повседневной жизни и даже в научной среде в ряде стран, объединенных общими культурными связями: в Индии, Индонезии, Ираке, Сирии и Северной Африке.

Но для действий с большими числами этот метод не очень удобен. Конечно, его можно улучшить и применять для умножения любых чисел, даже довольно больших, но, как это часто бывает, теоретические улучшения вовсе не обязательно будут достаточно эффективными для практического использования. Так что для действий с большими числами все же лучше использовать вычислительные устройства.

В одном из стихов главы 27 трактата Лао-цзы «Дао дэ цзин» говорится: тот, кто умеет считать, не пользуется чоу. Чоу — это инструмент для счета, состоявший из деревянной доски и нескольких бамбуковых палочек. Чоу был создан в V–III веках до н. э., так что это приспособление можно назвать одним из древнейших инструментов для вычислений.

Чоу представлял собой доску размером 8 x 8 клеток, в которых помещались бамбуковые палочки, обозначавшие числа. Изначально число палочек соответствовало числу единиц (до 10), но затем была создана упрощенная система, в которой поперечно лежащие палочки обозначали 5 или 10 единиц. Таким образом, числа от 1 до 5 обозначались вертикально расположенными палочками, числа 6, 7, 8 и 9 — горизонтальной палочкой (она обозначала 5), под которой выкладывалось необходимое количество вертикальных палочек. Число 10 было представлено горизонтальной палочкой, последующие десятки — дополнительными горизонтальными палочками.

Для обозначения чисел 60, 70, 80 и 90 вертикальные палочки выкладывались сверху, чтобы отличить их от 6, 7, 8 и 9. Возникал вопрос: как расположить палочки для обозначения сотен, тысяч и последующих степеней 10? Китайцы решили эту задачу при помощи доски, столбцы которой обозначали различные степени 10.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.