Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света Страница 10
- Категория: Научные и научно-популярные книги / Математика
- Автор: Микель Альберти
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 27
- Добавлено: 2019-02-05 10:49:51
Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света» бесплатно полную версию:В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна. Эта книга — способ совершить математическое путешествие вокруг света и узнать много нового о культурах разных народов.
Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света читать онлайн бесплатно
Укажем, как обозначаются некоторые большие числа.
Возможно, подобное представление чисел связано с подсчетом раковин каури: раковины при счете сначала объединялись в группы по 5, затем — в группы по 20. Пять групп по 20 раковин образовывали ряд из 100 раковин. Когда мы делим раковины на группы по 5, мы считаем от 1 до 5. Именно поэтому йоруба определяют числа 11, 12, 13 и 14 прибавлением единиц к 10. Однако эта версия не объясняет, почему число 15 определяется иначе.
Возможное объяснение заключается в том, что йоруба считали раковины на пальцах одной руки. Допустим, что мы держим в уме число 10 и последовательно разгибаем пальцы рук, чтобы отсчитать 11, 12, 13 и 14. Как отсчитать на пальцах этой же руки следующие числа до 20? Сначала разогнем пятый палец, а затем будем поочередно загибать пальцы до тех пор, пока не досчитаем до следующего десятка. Следовательно, числа, которые мы добавим к первому десятку, когда будем разгибать пальцы, мы отнимем от следующего десятка, когда будем загибать пальцы.
Таким образом, когда мы разогнем пятый палец, то будем представлять, что вычли 5 из 20: 20 — 5 = 15. Загнем один палец и получим 20 — 4 = 16, загнем еще один и получим 20 — 3 = 17. Когда мы загнем все пальцы, то начнем отсчет следующего десятка, то есть досчитаем до 20.
На рынке в МозамбикеМетодам счета за пределами академической среды посвящено множество исследований. Целью одного из них было узнать, как женщины каждый день выполняют сложение и вычитание в уме (чаще всего это происходит на рынках). Чтобы вычесть 5 единиц из 62, больше половины женщин на рынке в Мозамбике (Восточная Африка) сначала вычитали 2, а затем отнимали еще 3 от результата:
62 — 5 = (62 — 2) — 3 = 57.
Примерно треть опрошенных женщин вычитали 5 из 60, после чего прибавляли к результату две единицы:
62 — 5 = (60 — 5) + 2 = 57.
Меньшинство вычитало 10 из 62, после чего прибавляло к результату разность
62 — 5 = (62–10) + (10 — 5) = 57.
При умножении большинство женщин удваивали числа до тех пор, пока не получали приближенный результат. К примеру, они умножали 6 на 13 следующим образом (этот метод похож на египетский, описанный в начале этой главы):
Авторство всех этих методов подсчета неизвестно — так же как неизвестно, обучал ли женщин кто-либо считать именно таким способом. Возможно все описанные способы счета в уме составляют часть культурной традиции, связанной с ролью женщины в торговых отношениях.
В Нигерии также были зафиксированы алгоритмы вычислений в уме, схожие с приведенными выше. Так, сумма 18 + 19 вычислялась по следующим правилам:
18 + 19 = (18 — 1) + (19 +1) = 17 + 20 = 37
18 + 19 = (20 — 2) + (20 — 1) = 20 + 20 — (2 + 1) = 40 — 3 = 37.
При делении 45 на 3 полезно знать, что 21/3 = 7:
Эти методы позволяют понять, что одни и те же действия можно выполнять множеством способов, а математическое творчество довольно распространено.
В индийском автобусеГород Ченнаи, ранее носивший название Мадрас, — столица штата Тамилнад на юго-востоке Индии. Водители автобусов в этой местности должны очень быстро вычислять в уме, чтобы определить, сколько денег должен заплатить каждый пассажир (сумма зависит от тарифов на разных участках пути), а в конце рабочего дня на основе дневного заработка они должны вычислить так называемую батта — свою заработную плату. Батта зависит от разновидности автобуса, числа поездок и дневной выручки.
Нирмала Нареш из Университета штата Иллинойс изучил методы, которые используют водители автобусов для вычисления батта и платы за проезд в зависимости от маршрута. При этом водители учитывают соотношение между индийской валютой рупией, ее сотой частью (пайсом) и различными банкнотами и монетами.
Улица Ченная в штате Тамилнад (Индия).
Далее изложены вычисления, которые совершает в уме водитель ченнайского автобуса, чтобы найти произведение 3·293 и 3,30·61:
3·293 = 3·300 — (3·7) = 900 — 21 = 879.
3,50·61 = 3·61 + (1/2)·61 = 183 + 30,50 = 213,5.
Как видите, водитель не выполняет умножение напрямую и не применяет школьные методы, а упрощает исходные числа, чтобы легче считать в уме. В первом случае он округляет 293 до 300. Умножить 300 на 3 в уме несложно, но полученный результат больше правильного на величину, в три раза большую, чем допущенная погрешность в 7 единиц. Чтобы получить правильный ответ, нужно вычесть из 900 три раза по 7. Во втором случае десятичная дробь 3,50 раскладывается на целую и дробную части, то есть на три единицы и одну половину. Далее 61 умножается на 3 — получаем 183. Остается добавить к этому числу половину от 61, то есть 30,5.
Эти вычисления в уме доказывают, что водители прекрасно умеют не только представлять числа в виде суммы, но и на практике применяют известное в академическом мире свойство дистрибутивности умножения относительно сложения. Хотя водители получили начальное математическое образование и учились считать в уме в школе, в повседневной жизни они применяют народные методы, которые отличаются от академических.
Разделение десятичной дроби на целую и дробную часть при умножении часто используется, когда нужно произвести вычисления в уме. Этот народный метод не изучается в школах, но встречается в разных частях света.
* * *
ВЫЧИСЛЕНИЕ КВАДРАТОВ В УМЕ
Так как (n ± 1)2 — n2 ± 2n + 1, квадрат целого числа можно вычислить в уме, зная квадрат предыдущего или следующего числа:
312 = 302 + 2·30 +1 = 900 + 60 + 1 — 961.
192 = 202 - 2·20 + 1 = 400 — 40 + 1 = 439.
Так как n2 = а2 + n2 — а2 = а2 + (n + а)·(n — а), квадрат целого числа также можно определить через произведение его суммы и разности с другими числами, которое несложно вычислить:
192 = 1 + (192 - 12) = 1 + (19+1)·(19-1) = 1 + 20·18 = 1 + 360 = 361.
372 = 9 + (372- З2) = 9 + (37 + 3)·(37 — 3) = 9 + 40·34 = 9 + 40·(30 + 4) = 9 + 40·30 + 40·4 = 9 + 1200 + 160 = 1369.
* * *
Торг: стратегия действий с числами в торговлеТорг был и остается общепринятой торговой практикой. Хотя в западном мире он практически ушел в прошлое, в других регионах торг по-прежнему сохраняется на традиционных рынках и в излюбленных туристами местах.
Цель торга — прийти к соглашению относительно цены, которая устроит и продавца, и покупателя. Как правило, торг начинает продавец: он называет цену, которую должен заплатить покупатель. Часть игры заключается в том, что изначальная цена всегда завышена (порой — слишком завышена), и покупатель должен в ответ назвать другую, более низкую цену. При этом он не должен сбивать ее слишком сильно, чтобы продавец не почувствовал себя оскорбленным и не потерял интерес к покупателю.
Неписанное правило торга на традиционных рынках заключается в том, что справедливой ценой можно считать цену, равную половине первоначальной. Но это правило выполняется не всегда — порой продавец сам приглашает покупателя назвать цену первым.
Чаще всего цена при торге меняется на некоторую фиксированную величину, но покупатель и продавец могут договориться о скидке в процентах. Если покупателю предложили скидку в 5 %, ему не следует ожидать, что он сможет выторговать скидку в 50 %, то есть приобрести товар за полцены. В этом случае торг можно считать успешным, если покупателю удается удвоить названную скидку, то есть сбавить 10 % от цены. Скидки обычно предлагаются на довольно дорогие товары, так что даже небольшое изменение цены в процентном отношении предполагает существенную экономию, поэтому такой вид торга встречается не очень часто.
Наиболее простая математическая модель торга — это линейная модель. В ней цены, предлагаемые продавцом и покупателем, изменяются пропорционально. При всей своей простоте эта модель неточна: в реальной жизни предлагаемые цены увеличиваются и уменьшаются неравномерно, и по мере приближения к соглашению цена изменяется все меньше.
Более точной кажется модель, в которой графики изменения цены представляют собой кривые. Кривая цены, предлагаемой покупателем, С(х), будет возрастающей и выпуклой. Это означает, что покупатель будет называть все большую цену, увеличивая ее все меньше и меньше. К примеру, последовательность значений 20, 60, 100 и 140 соответствует первой, линейной модели, последовательность 20, 50, 70 и 75 — второй модели. Значения в этой последовательности возрастают, но разница между ними становится все меньше. Кривая продавца, V(x), напротив, будет убывающей, и разница между последовательными значениями также будет убывать.
Если считать, что результатом увеличения С(х) и уменьшения V(x) будет итоговая цена, получим параболические кривые, так как увеличение и уменьшение будут описываться производными исходных функций, V'(х) и С'(х). В случае с кривой покупателя производная положительна (С(х) возрастает), в случае с кривой продавца — отрицательна (V(х) убывает):
Жалоба
Напишите нам, и мы в срочном порядке примем меры.